def values_single_test(self): print("BinaryTest : Running values_single_test...") Scan(self.x, self.y, params=self.values_single, model=ta.templates.models.cervical_cancer)
def values_list_test(self): print("MultiLabelTest : Running values_list_test...") Scan(self.x, self.y, x_val=self.x_val, y_val=self.y_val, params=self.values_list, round_limit=5, dataset_name='MultiLabelTest', experiment_no='000', model=ta.templates.models.iris, random_method='crypto_uniform', seed=2423, search_method='linear', permutation_filter=lambda p: p['first_neuron'] * p['hidden_layers'] < 9, reduction_method='correlation', reduction_interval=2, reduction_window=2, reduction_threshold=0.2, reduction_metric='val_loss', reduce_loss=True, last_epoch_value=True, clear_tf_session=False, disable_progress_bar=True, debug=True)
def test_scan_iris_1(self): print("Running Iris dataset test 1...") Scan(self.x, self.y, params=p1, dataset_name='testing', experiment_no='000', model=iris_model)
def test_scan_cancer_metric_reduction(self): print("Running Cervical Cancer dataset test...") Scan(self.x, self.y, grid_downsample=0.0005, params=p3, dataset_name='testing', experiment_no='a', model=self.model, reduction_threshold=0.01, reduction_method='correlation', reduction_interval=2)
def test_scan_iris_2(self): print("Running Iris dataset test 2...") Scan(self.x, self.y, params=p2, dataset_name='testing', experiment_no='000', model=iris_model, last_epoch_value=True)
def test_scan_iris_2(self): print("Running Iris dataset test 2...") Scan(self.x, self.y, params=p2, dataset_name='testing', experiment_no='000', model=iris_model) Reporting('testing_000.csv')
def test_scan_iris_explicit_validation_set_force_fail(self): print("Running explicit validation dataset test with loss reduction") try: Scan(self.x_train, self.y_train, params=p2, dataset_name='testing', experiment_no='000', model=iris_model, y_val=self.y_dev) except RuntimeError: pass
def test_scan_iris_explicit_validation_set(self): print("Running explicit validation dataset test with metric reduction") Scan(self.x_train, self.y_train, params=p2, dataset_name='testing', experiment_no='000', model=iris_model, x_val=self.x_dev, y_val=self.y_dev)
def test_reverse_method(self): print("Testing reverse method on Cancer dataset...") Scan(self.x, self.y, params=p3, dataset_name='testing', search_method='reverse', grid_downsample=0.00025, experiment_no='000', model=self.model)
def test_linear_method(self): print("Testing linear method on Cancer dataset...") Scan(self.x, self.y, params=p3, dataset_name='testing', search_method='linear', grid_downsample=0.0005, experiment_no='000', model=self.model)
def test_scan_cancer(self): print("Running Cervical Cancer dataset test...") Scan(self.x, self.y, grid_downsample=0.0005, params=p3, dataset_name='testing', experiment_no='a', model=self.model, reduction_method='correlation', reduction_interval=5) Reporting('testing_a.csv')
def values_range_test(self): print("MultiLabelTest : Running values_range_test...") Scan(self.x, self.y, params=self.values_range, model=ta.templates.models.iris, grid_downsample=0.0001, random_method='sobol', reduction_method='correlation', reduction_interval=2, reduction_window=2, reduction_threshold=0.2, reduction_metric='val_acc', reduce_loss=False, debug=True)
def values_range_test(self): print("BinaryTest : Running values_range_test...") Scan(self.x_train, self.y_train, params=self.values_range, model=ta.templates.models.cervical_cancer, grid_downsample=0.0001, permutation_filter=lambda p: p['first_neuron'] * p['hidden_layers'] < 220, random_method='sobol', reduction_method='correlation', reduction_interval=2, reduction_window=2, reduction_threshold=0.2, reduction_metric='val_acc', reduce_loss=False, debug=True)
def values_list_test(self): print("BinaryTest : Running values_list_test...") Scan(self.x_train, self.y_train, x_val=self.x_val, y_val=self.y_val, params=self.values_list, round_limit=5, dataset_name='BinaryTest', experiment_no='000', model=ta.templates.models.cervical_cancer, random_method='crypto_uniform', seed=2423, search_method='linear', reduction_method='correlation', reduction_interval=2, reduction_window=2, reduction_threshold=0.2, reduction_metric='val_loss', reduce_loss=True, last_epoch_value=True, clear_tf_session=False, disable_progress_bar=True, debug=True)
def values_single_test(self): print("MultiLabelTest : Running values_single_test...") Scan(self.x, self.y, params=self.values_single, model=ta.templates.models.iris)