コード例 #1
0
def test_cnf_conversion_complex():
    lang, x, y = create_small_world_elements(2)

    s1 = exists(y, land(lang.Dodec(y), lang.BackOf(x, y)))
    s2 = land(lang.Cube(x), exists(y, land(lang.Tet(y), lang.LeftOf(x, y))))
    phi = forall(x, implies(s2, s1))
    result = remove_quantifiers(lang, phi, QuantifierEliminationMode.All)
    assert len(to_conjunctive_normal_form_clauses(lang, result)) == 30

    # Now remove the quantifiers after tranforming to PNNF
    result = remove_quantifiers(lang,
                                to_prenex_negation_normal_form(lang, phi),
                                QuantifierEliminationMode.All)
    assert len(to_conjunctive_normal_form_clauses(lang, result)) == 126
コード例 #2
0
def test_existential_elimination2():
    lang, x, y = create_small_world_elements(2)

    s1 = exists(y, land(lang.Dodec(y), lang.BackOf(x, y)))
    s2 = land(lang.Cube(x), exists(y, land(lang.Tet(y), lang.LeftOf(x, y))))
    phi = forall(x, implies(s2, s1))
    result = remove_quantifiers(lang, phi, QuantifierEliminationMode.All)
    assert is_quantifier_free(result)
コード例 #3
0
def test_universal_elimination_works():
    tw = tarskiworld.create_small_world()
    x = tw.variable('x', tw.Object)

    y = tw.variable('y', tw.Object)

    _ = tw.constant('obj1', tw.Object)
    _ = tw.constant('obj2', tw.Object)
    _ = tw.constant('obj3', tw.Object)

    s1 = exists(y, land(tw.Dodec(y), tw.BackOf(x, y)))
    s2 = land(tw.Cube(x), exists(y, land(tw.Tet(y), tw.LeftOf(x, y))))
    phi = forall(x, implies(s2, s1))
    # print(str(phi))
    result = remove_quantifiers(tw, phi, QuantifierEliminationMode.Forall)
    result2 = remove_quantifiers(tw, result, QuantifierEliminationMode.Forall)
    assert str(result) == str(result2)
コード例 #4
0
def fully_ground(smtlang, f, horizon):
    phi = remove_quantifiers(smtlang, f, QuantifierEliminationMode.All)
    phi = Simplify().simplify_expression(phi)
    if phi is False:
        raise RuntimeError(
            f'Formula {phi} simplified to False, hence the theory is not satisfiable'
        )
    return phi
コード例 #5
0
def test_cnf_conversion_complex():
    lang, x, y = create_small_world_elements(2)

    s1 = exists(y, land(lang.Dodec(y), lang.BackOf(x, y)))
    s2 = land(lang.Cube(x), exists(y, land(lang.Tet(y), lang.LeftOf(x, y))))
    phi = forall(x, implies(s2, s1))
    result = remove_quantifiers(lang, phi, QuantifierEliminationMode.All)
    transf = CNFTransformation.rewrite(lang, result)
    # print(transf.cnf)
    # print('\n'.join([','.join([str(l) for l in c]) for c in transf.clauses]))
    assert len(transf.clauses) == 30

    # Now remove the quantifiers after tranforming to PNNF
    result = remove_quantifiers(lang,
                                to_prenex_negation_normal_form(lang, phi),
                                QuantifierEliminationMode.All)
    transf = CNFTransformation.rewrite(lang, result)
    assert len(transf.clauses) == 126
コード例 #6
0
def test_existential_elimination1():
    lang, x, y = create_small_world_elements(2)
    obj1, obj2 = lang.get("obj1"), lang.get("obj2")

    phi = exists(y, land(lang.Dodec(y), lang.BackOf(x, y)))
    result = remove_quantifiers(lang, phi, QuantifierEliminationMode.Exists)

    # We cannot guarantee in which order the expansion of the exists will be done, so we check for both possibilities:
    assert result == (lang.Dodec(obj1) & lang.BackOf(x, obj1)) | (lang.Dodec(obj2) & lang.BackOf(x, obj2)) or \
        result == (lang.Dodec(obj2) & lang.BackOf(x, obj2)) | (lang.Dodec(obj1) & lang.BackOf(x, obj1))