コード例 #1
0
ファイル: mi_strategy.py プロジェクト: Spain2394/Micromouse
class StrategyTestDFSDisplayEV3(Strategy):
	mouse = None
	isVisited = []
	path = []
	isBack = False

	def __init__(self, mouse):
		self.mouse = mouse
		self.isVisited = [[0 for i in range(self.mouse.mazeMap.width)] for j in range(self.mouse.mazeMap.height)]
		self.isVisited[self.mouse.x][self.mouse.y] = 1
		self.network = NetworkInterface()
		self.network.initSocket()

	def checkFinished(self):
		return self.isBack

	def go(self):
		self.mouse.senseWalls()
		print(self.mouse.getCurrentCell().getWhichIsWall())
		sendData = {'x': self.mouse.x, 'y':self.mouse.y, 'up':self.mouse.canGoUp(), 'down':self.mouse.canGoDown(), 'left':self.mouse.canGoLeft(), 'right':self.mouse.canGoRight()}
		self.network.sendStringData(sendData)

		if self.mouse.canGoLeft() and not self.isVisited[self.mouse.x-1][self.mouse.y]:
			self.path.append([self.mouse.x, self.mouse.y])
			self.isVisited[self.mouse.x-1][self.mouse.y] = 1
			self.mouse.goLeft()
		elif self.mouse.canGoUp() and not self.isVisited[self.mouse.x][self.mouse.y-1]:
			self.path.append([self.mouse.x, self.mouse.y])
			self.isVisited[self.mouse.x][self.mouse.y-1] = 1
			self.mouse.goUp()
		elif self.mouse.canGoRight() and not self.isVisited[self.mouse.x+1][self.mouse.y]:
			self.path.append([self.mouse.x, self.mouse.y])
			self.isVisited[self.mouse.x+1][self.mouse.y] = 1
			self.mouse.goRight()
		elif self.mouse.canGoDown() and not self.isVisited[self.mouse.x][self.mouse.y+1]:
			self.path.append([self.mouse.x, self.mouse.y])
			self.isVisited[self.mouse.x][self.mouse.y+1] = 1
			self.mouse.goDown()
		else:
			if len(self.path) != 0:
				x, y = self.path.pop()
				if x < self.mouse.x:
					self.mouse.goLeft()
				elif x > self.mouse.x:
					self.mouse.goRight()
				elif y < self.mouse.y:
					self.mouse.goUp()
				elif y > self.mouse.y:
					self.mouse.goDown()
			else:
				self.isBack = True
コード例 #2
0
ファイル: strategy.py プロジェクト: Spain2394/Micromouse
class StrategyTestRendezvous(Strategy):
    mouse = None
    isVisited = []
    path = []
    network = None
    neighbors_states = {}  # group states including self
    topological_neighbors = []
    switchGoal = False

    stop_condition = False
    whoami = -1
    dx = []
    dy = []
    isBack = False
    iterations = 0
    num_bots = -1
    # starting_pose = ()
    starting_pose = ()
    drive = (None, None)

    # mazeMap = None

    # define number of robots
    def __init__(self, mouse, initPoint, num_bots):
        # print("INTIA")

        self.mouse = mouse
        self.num_bots = num_bots
        self.isVisited = [[0 for i in range(self.mouse.mazeMap.width)]
                          for j in range(self.mouse.mazeMap.height)]
        # print(self.isVisited)
        self.isVisited[self.mouse.x][self.mouse.y] = 1
        # print("made it past initialization")
        for i in range(1, self.num_bots + 1):
            if initPoint[str(i)] == (self.mouse.x, self.mouse.y):
                self.whoami = i
            self.neighbors_states[i] = {
                'robot': i,
                'x': initPoint[str(i)][0],
                'y': initPoint[str(i)][1],
                'direction': 'UP'
            }
            # print(self.neighbors_states[i])
            # print("whoami:%s"%self.whoami)

        self.starting_pose = initPoint[str(self.whoami)]
        self.network = NetworkInterface()
        self.network.initSocket()
        self.network.startReceiveThread()
        # print("network start receive thread")

    def checkFinished(self):
        return self.isBack

    def distance_to_near_neigh(self):
        dx_temp = 0
        dy_temp = 0
        follow_him = -1
        distance = 100  # some big number
        temp_distance = 0

        for bots in range(1, self.num_bots + 1):
            if bots == self.whoami:
                continue
            else:
                dx_temp = self.neighbors_states[bots]['x'] - self.mouse.x

                dy_temp = self.neighbors_states[bots]['y'] - self.mouse.y

                temp_distance = (dx_temp * dx_temp + dy_temp * dy_temp)**(1 /
                                                                          2)

                if temp_distance < distance:
                    distance = temp_distance
                    follow_him = bots

        return distance, follow_him

    def distance_to_far_neigh(self):
        dx_temp = 0
        dy_temp = 0
        follow_him = -1
        distance = 0  # some small number
        temp_distance = 0
        cost = 5

        for bots in range(1, self.num_bots + 1):

            if bots == self.whoami:
                continue
            else:
                dx_temp = self.neighbors_states[bots]['x'] - self.mouse.x

                dy_temp = self.neighbors_states[bots]['y'] - self.mouse.y

                temp_distance = (dx_temp * dx_temp + dy_temp * dy_temp)**(1 /
                                                                          2)

                if temp_distance > distance:
                    distance = temp_distance
                    follow_him = bots

        return distance, follow_him

    def distance_to_you(self):
        distance = -1
        if abs(dx_temp) < abs(self.dx):
            self.dx = dx_temp
            if self.dx < 0: x_Dir = "LEFT"
            else: x_Dir = "RIGHT"

        elif abs(dy_temp) < abs(self.dy):
            self.dy = dx_temp
            if self.dy < 0: y_Dir = "UP"  # opposite to intuition
            else: y_Dir = "DOWN"

        if abs(self.dx) < abs(self.dy):
            return x_Dir
            # elif abs(self.dx) == abs(self.dy):return y_Dir # just make up defualt when tie
        else:
            return y_Dir

    def Centroid(self):
        area = 0
        centroid = ()
        weights = 0
        dx = 0
        dy = 0
        dx_temp = 0
        dy_temp = 0
        weighted_x = 0
        weighted_y = 0

        for bot in self.neighbors_states:
            dx_temp = abs(self.neighbors_states[bot]['x'] - self.mouse.x)
            dy_temp = abs(self.neighbors_states[bot]['y'] - self.mouse.y)
            if dx_temp > dx: dx = dx_temp
            if dy_temp > dy: dy = dy_temp

        weighted_x = math.floor(((dx / dy) * (self.mouse.x + dx)) / 2)
        weighted_y = math.floor(((dy / dx) * (self.mouse.y + dy)) / 2)

        centroid = (weighted_x, weighted_y)
        return centroid

    def GroupCentroid(self):
        group_centroid = ()
        sumCx = 0
        sumCy = 0
        sumAc = 0
        lstP = self.neighbors_states.copy()  # copy the neighbors_states
        for i in range(1, self.num_bots + 1):
            sumCx += lstP[i]['x']
            sumCy += lstP[i]['y']

        group_centroid = (math.ceil(sumCx / self.num_bots),
                          math.ceil(sumCy / self.num_bots))
        print("group_centroid check:", group_centroid)
        return group_centroid

    def BestMove(self, utility, maze):
        direction = ['Up', 'Down', 'Left', 'Right']

        return (direction_best, movement_best, state_next_best, reward_max)

    def check_greatest_distance(self):
        x_Dir = None
        y_Dir = None
        cost = 2

        shortest_path_list_x = []
        shortest_path_list_y = []
        # print("I'm in")

        for bots in self.neighbors_states:
            if bots != self.whoami:
                dx_temp = self.neighbors_states[bots]['x'] - self.mouse.x
                dy_temp = self.neighbors_states[bots]['y'] - self.mouse.y

                if dy_temp < 0 and self.mouse.direction is not 'DOWN':
                    dy_temp *= cost
                elif dy_temp > 0 and self.mouse.direction is not 'UP':
                    dy_temp *= cost

                if dx_temp < 0 and self.mouse.direction is not 'LEFT':
                    dx_temp *= cost
                elif dx_temp > 0 and self.mouse.direction is not 'RIGHT':
                    dx_temp *= cost

                shortest_path_list_x.append(dx_temp)
                shortest_path_list_y.append(dy_temp)

        return shortest_path_list_x, shortest_path_list_y

    def distance_to_wall(self, cell, direction):
        check = True
        open_distance = 0
        move_dir = {'U': [0, -1], 'D': [0, 1], 'L': [-1, 0], 'R': [1, 0]}

        current_cell = [cell.x, cell.y
                        ]  # are we modifying current cell?? if so make a copy
        dir = direction[0]
        # print(dir)

        height = self.mouse.mazeMap.height
        width = self.mouse.mazeMap.width

        while check:
            if current_cell[0] >= 0 and current_cell[1] >= 0 and current_cell[
                    0] < width and current_cell[1] < height:
                if self.mouse.mazeMap.getCell(
                        current_cell[0], current_cell[1]).getIsThereWall(dir):
                    # print("in the conditional")
                    open_distance += 1
                    current_cell[0] += move_dir[dir][0]
                    # print("current_cell_0:",current_cell[0])
                    current_cell[1] += move_dir[dir][1]
                else:
                    check = False
            else:
                check = False
        return open_distance

    def cost(self, goal):

        direction_list = {'U': [0, -1], 'D': [0, 1], 'L': [-1, 0], 'R': [1, 0]}
        my_dir = 'U'  #
        moves = []
        state = (self.mouse.x, self.mouse.y)
        cost = 100  # some very high cost
        isGoal = False
        gamma = 0.01  # cost is lower when distance is longer
        expense = 0

        hasBeen = [[0 for i in range(self.mouse.mazeMap.width)]
                   for j in range(self.mouse.mazeMap.height)]
        takeAction = []
        hasBeen[state[0]][state[1]] = 1  # has been at initial location
        open = [(expense, cost, state, my_dir)
                ]  # some constants a start point and an end point

        while len(open) < 5 and len(open) > 0:  # give me 20 good points
            item = open.pop(0)  # pop appended item

            expense = item[0]
            cost = item[1]
            state = item[2]
            my_dir = item[3]

            counter = 0
            for d in direction_list:
                if self.mouse.mazeMap.getCell(
                        state[0], state[1]).getIsThereWall(
                            d
                        ) == False:  # while mouse can move in some direction
                    counter += 1

                    delta = direction_list[d]
                    next_state = (state[0] + delta[0], state[1] + delta[1])
                    if hasBeen[next_state[0]][
                            next_state[1]] == 0:  # hasn't been
                        next_cost = cost + 1 if my_dir is d else 2  #

                        expense = self.priority(next_state, d, goal)
                        takeAction.append([expense, next_state, d])
                        hasBeen[next_state[0]][next_state[1]] = 1

                        open.append((expense, next_cost, next_state, d))

            takeAction.sort()
            open.sort()  # sort based on low expense
            return takeAction  # return after only one iteration

    def dist(self, xy):
        x, y = xy
        dx_temp = 0
        dy_temp = 0
        distance = 0  # some small number

        dx_temp = x - self.mouse.x

        dy_temp = y - self.mouse.y

        distance = (dx_temp * dx_temp + dy_temp * dy_temp)**(1 / 2)

        return distance

    def priority(self, state, d, goal):
        goal_x, goal_y = goal

        x, y = state[0], state[1]

        alpha = 10  # weight for going in a straight line
        beta = 0.001  # weight for going towards gradient
        zeta = 1
        epsilon = 0.1
        energy = ((self.mouse.x - x)**2 + (self.mouse.y - y)**2)**(1 / 2)

        straight_line = 0
        shortest_distance = 0
        gradient = 0
        expense = 0

        cell = self.mouse.mazeMap.getCell(x, y)

        straight_line = self.distance_to_wall(cell, d)
        # print("straight line: ", straight_line)
        # gradient = (((x - self.GroupCentroid()[0])**2 + (y-self.GroupCentroid()[1])**2)**(1/2))
        gradient = (((x - goal_x)**2 + (y - goal_y)**2)**(1 / 2))
        expense = gradient / 2
        return expense

    def follow_it(self, near_bot):
        cost = 0
        state = (self.neighbors_states[near_bot]['x'],
                 self.neighbors_states[near_bot]['y'])
        direction = self.neighbors_states[near_bot]['direction']
        action = [(cost, state, direction)]
        return action

    def go(self):
        self.iterations += 1
        self.mouse.senseWalls()
        self.mouse.getCurrentCell().getWhichIsWall()
        sendData = {
            'robot': self.whoami,
            'x': self.mouse.x,
            'y': self.mouse.y,
            'up': not self.mouse.canGoUp(),
            'down': not self.mouse.canGoDown(),
            'left': not self.mouse.canGoLeft(),
            'right': not self.mouse.canGoRight(),
            'direction': self.mouse.direction
        }
        # print(sendData)
        self.network.sendStringData(sendData)
        recvData = self.network.retrieveData()

        while recvData:

            otherMap = recvData
            cell = self.mouse.mazeMap.getCell(otherMap['x'], otherMap['y'])
            self.neighbors_states[otherMap['robot']] = {
                'robot': otherMap['robot'],
                'x': otherMap['x'],
                'y': otherMap['y'],
                'direction': self.mouse.direction
            }  # update neighbors_states as received
            if otherMap['up']:
                self.mouse.mazeMap.setCellUpAsWall(cell)
            if otherMap['down']:
                self.mouse.mazeMap.setCellDownAsWall(cell)
            if otherMap['left']:
                self.mouse.mazeMap.setCellLeftAsWall(cell)
            if otherMap['right']:
                self.mouse.mazeMap.setCellRightAsWall(cell)
            recvData = self.network.retrieveData()

        print('-----------------------------')
        group_centroid = ()
        distance = 0
        goal = ()
        action = ()
        cell = self.mouse.mazeMap.getCell(self.mouse.x, self.mouse.y)
        direction = self.mouse.direction
        group_centroid = self.GroupCentroid()
        print("group centroid: ", group_centroid)
        far_distance, far_bot = self.distance_to_far_neigh()
        print("far distance:", far_distance)
        self.switchGoal = False
        moved = False
        threshold = 1
        distance, near_bot = self.distance_to_near_neigh(
        )  # goal begins as near neighbor
        goal_1 = (None, None)

        head = True if near_bot > self.whoami else False
        goal = (self.neighbors_states[near_bot]['x'],
                self.neighbors_states[near_bot]['y'])

        print("far_distance", far_distance)
        print("far bot", far_bot)
        if far_distance < threshold:
            print("distance to far neighbor:", far_distance)
            self.isBack = True

        if (self.mouse.x, self.mouse.y) == goal:
            if not head:
                self.switchGoal = True
                action = self.follow_it(near_bot)

            else:
                far_distance, far_bot = self.distance_to_far_neigh()
                group_centroid = self.group_centroid
                close_group = (self.neighbors_states[far_bot]['x'],
                               self.neighbors_states[far_bot]['y'])
                cent = self.dist(group_centroid)
                far = self.dist(close_group)
                goal = close_group if far < cent else group_centroids
                # goal = self.group_centroid # try group centroid

        else:
            switchGoal = False

        action = self.cost(goal)

        # if self.isBack:
        #      print("RENDEZVOUS")
        #      self.checkFinished() # check if finished

        for moves in action:  # best action loop
            print(moves)
            x, y = moves[1]
            direction = moves[2]

            if moved == True: break

            print("x,y", (x, y))
            print("self : ", self.switchGoal)
            print("head : ", head)

            if (x, y) == goal:
                if not head:
                    self.switchGoal = True  #
                    x, y = (self.neighbors_states[near_bot]['x'],
                            self.neighbors_states[near_bot]['y'])

            if self.isVisited[x][
                    y] == 0 or self.switchGoal:  # may be some confusion here if not continuos
                print("in")
                print("self.isVisited[x][y]: ", self.isVisited[x][y] == 0)

                print(self.mouse.getCurrentCell().getWhichIsWall())
                if self.mouse.x < x and self.mouse.canGoRight():
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.isVisited[self.mouse.x + 1][self.mouse.y] = 1
                    self.mouse.goRight()
                    moved = True
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'RIGHT'
                    }
                    print("RIGHT")
                elif self.mouse.x > x and self.mouse.canGoLeft():
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.isVisited[self.mouse.x - 1][self.mouse.y] = 1
                    self.mouse.goLeft()
                    moved = True
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'LEFT'
                    }
                    print("LEFT")
                elif self.mouse.y > y and self.mouse.canGoUp():
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.isVisited[self.mouse.x][self.mouse.y - 1] = 1
                    self.mouse.goUp()
                    moved = True
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'UP'
                    }
                    print("UP")
                elif self.mouse.y < y and self.mouse.canGoDown():
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.isVisited[self.mouse.x][self.mouse.y + 1] = 1
                    self.mouse.goDown()
                    moved = True
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'DOWN'
                    }
                    print("DOWN")
        sleep(0.01)

        if moved == False:  #backtrack if unable to move by best action
            if len(self.path) != 0:
                x, y = self.path.pop()
                if x < self.mouse.x:
                    self.mouse.goLeft()
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'LEFT'
                    }
                    print("LEFT")
                    moved = True
                elif x > self.mouse.x:
                    self.mouse.goRight()
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'RIGHT'
                    }
                    moved = True
                    print("RIGHT")
                elif y < self.mouse.y:
                    self.mouse.goUp()
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'UP'
                    }
                    moved = True
                    print("UP")
                elif y > self.mouse.y:
                    self.mouse.goDown()
                    self.neighbors_states[self.whoami] = {
                        'robot': self.whoami,
                        'x': self.mouse.x,
                        'y': self.mouse.y,
                        'direction': 'DOWN'
                    }
                    moved = True
                    print("DOWN")
            else:
                self.isBack = True
        sleep(0.05)
コード例 #3
0
ファイル: strategy.py プロジェクト: Spain2394/Micromouse
class StrategyTestMultiDFS(Strategy):
    mouse = None
    isVisited = []
    path = []
    isBack = False
    network = None

    def __init__(self, mouse):
        self.mouse = mouse
        self.isVisited = [[0 for i in range(self.mouse.mazeMap.width)]
                          for j in range(self.mouse.mazeMap.height)]
        self.isVisited[self.mouse.x][self.mouse.y] = 1
        self.network = NetworkInterface()
        self.network.initSocket()
        self.network.startReceiveThread()

    def checkFinished(self):
        return self.isBack

    def go(self):
        self.mouse.senseWalls()
        print(self.mouse.getCurrentCell().getWhichIsWall())
        sendData = {
            'x': self.mouse.x,
            'y': self.mouse.y,
            'up': not self.mouse.canGoUp(),
            'down': not self.mouse.canGoDown(),
            'left': not self.mouse.canGoLeft(),
            'right': not self.mouse.canGoRight()
        }
        print(self.network.sendStringData(sendData))
        recvData = self.network.retrieveData()
        print("recvData%s: " % recvData)

        while recvData:
            otherMap = recvData
            cell = self.mouse.mazeMap.getCell(otherMap['x'], otherMap['y'])
            self.isVisited[otherMap['x']][otherMap['y']] = 1
            if otherMap['up']:
                self.mouse.mazeMap.setCellUpAsWall(cell)
            if otherMap['down']:
                self.mouse.mazeMap.setCellDownAsWall(cell)
            if otherMap['left']:
                self.mouse.mazeMap.setCellLeftAsWall(cell)
            if otherMap['right']:
                self.mouse.mazeMap.setCellRightAsWall(cell)
            recvData = self.network.retrieveData()

        if self.mouse.canGoLeft() and not self.isVisited[self.mouse.x -
                                                         1][self.mouse.y]:
            self.path.append([self.mouse.x, self.mouse.y])
            self.isVisited[self.mouse.x - 1][self.mouse.y] = 1
            self.mouse.goLeft()
        elif self.mouse.canGoUp(
        ) and not self.isVisited[self.mouse.x][self.mouse.y - 1]:
            self.path.append([self.mouse.x, self.mouse.y])
            self.isVisited[self.mouse.x][self.mouse.y - 1] = 1
            self.mouse.goUp()
        elif self.mouse.canGoRight() and not self.isVisited[self.mouse.x +
                                                            1][self.mouse.y]:
            self.path.append([self.mouse.x, self.mouse.y])
            self.isVisited[self.mouse.x + 1][self.mouse.y] = 1
            self.mouse.goRight()
        elif self.mouse.canGoDown(
        ) and not self.isVisited[self.mouse.x][self.mouse.y + 1]:
            self.path.append([self.mouse.x, self.mouse.y])
            self.isVisited[self.mouse.x][self.mouse.y + 1] = 1
            self.mouse.goDown()
        else:
            if len(self.path) != 0:
                x, y = self.path.pop()
                if x < self.mouse.x:
                    self.mouse.goLeft()
                elif x > self.mouse.x:
                    self.mouse.goRight()
                elif y < self.mouse.y:
                    self.mouse.goUp()
                elif y > self.mouse.y:
                    self.mouse.goDown()
            else:
                self.isBack = True

        sleep(0.5)
class Strategy_SRSS(Strategy):
	network = None
	controlNet = None
	send_data_history = None

	local_id = 0
	local_task_id = 0
	local_energy_level = 100
	local_direction = [1, 0]			# Direction vector: not necessary to be normalized
	local_coordinate = [0, 0]
	local_task_destination = [0, 0]
	local_step_size = 1
	local_go_interval = 0.5
	local_round = 0
	local_stage = 'start'
	local_step = 0
	local_negotiation = 1
	local_queue = []					# [3, 1, 2] means the priority: robot-3 > robot-1 > robot-2	
	local_negotiation_result = False	# If all the queues are the same, set as True, otherwise, False

	global_num_robots = 1
	global_num_tasks = 1
	global_min_require_robots = 1
	global_group_num_robots = 1
	global_energy_level = {}			# {1: 100, 2: 99, 3: 85, ...}
	global_negotiation_queue = {}		# {'1': [3, 1, 2], '2': [3, 2, 1], '3': [3, 1, 2], ...}
	global_agreement = {}				# {'1': True, '2': False, '3': True, ...}
	global_task_duration = 10
	global_task_radius = 200
	global_task_coordinate = [400, 400]
	global_robots_coordinate = {}

	local_debugger = None

	def __init__(self, id, \
				coordinate=[50, 50], \
				direction=[1, 1], \
				step_size=1, \
				go_interval=0.5, \
				num_robots=1, \
				controlNet='172.16.0.254'):
		self.local_id = id
		self.local_coordinate = coordinate
		self.local_direction = direction
		self.local_step_size = step_size
		self.local_go_interval = go_interval
		self.global_num_robots = num_robots
		self.controlNet = controlNet
		self.network = NetworkInterface(port=19999)
		self.network.initSocket()
		self.network.startReceiveThread()
		# Debugger tool:
		self.local_debugger = COREDebuggerVirtual((controlNet, 12888))

	def checkFinished(self):
		return (math.fabs(self.local_task_destination[0] - self.local_coordinate[0]) < 5 and \
				math.fabs(self.local_task_destination[1] - self.local_coordinate[1]) < 5)

	def go(self):
		if self.local_stage == 'start':
			self.local_round = self.local_round + 1
			self.local_stage = 'selection'
			self.selection()
		elif self.local_stage == 'selection':
			self.local_stage = 'formation'
			self.formation()
		elif self.local_stage == 'formation':
			self.local_stage = 'routing'
			self.routing()
		elif self.local_stage == 'routing':
			if self.checkFinished():
				self.local_debugger.send_to_monitor('I finished my task!')
				self.local_stage = 'end'
			else:
				self.routing()
		elif self.local_stage == 'end':
			self.broadcast_coordinate()
			# default stage is 'end'
			# if new tasks are released: local_stage -> 'start'
		else:
			print('Unknown state.')
		time.sleep(self.local_go_interval)

	def global_condition_func(self, recv_data):
		# TODO: 
		# 	Check if there is a task released.
		# 	Set self.local_stage -> 'start'
		# 	If some task is executing, put it into a place to store
		pass

	def message_communication(self, send_data, condition_func, time_out=10):
		# input: send_data is a dictionary
		# output: recv_data is also a dictionary
		# new task release: trigger a new round of <selection-formation-routing>
		while True:
			time_start = time.time()
			self.network.sendStringData(send_data)
			# self.local_debugger.send_to_monitor('send: ' + str(send_data))
			while time.time() - time_start < time_out:
				try:
					recv_data = self.network.retrieveData()
					if recv_data != None:
						# self.local_debugger.send_to_monitor('recv: ' + str(recv_data))
						# if new task is released
						self.global_condition_func(recv_data)
						if condition_func(recv_data) == True:
							self.send_data_history = send_data
							return recv_data
						else:
							continue
					else:
						continue
				except Exception as e:
					raise e
			self.network.sendStringData(self.send_data_history)
				
	def get_basic_status(self):
		status_dict = { \
						'id': self.local_id,
						'round': self.local_round,
						'stage': self.local_stage
						}
		return status_dict

	def selection(self):
		self.selection_step1()
		is_negotiation = self.selection_step2()
		is_agreement = self.selection_step3()
		if is_agreement == False:
			while is_negotiation:
				self.local_negotiation = self.local_negotiation + 1
				self.selection_step1()
				is_negotiation = self.selection_step2()
				is_agreement = self.selection_step3()
				if is_agreement == True:
					break
				else:
					continue
		self.local_negotiation = 1
		self.selection_execution()
		# After this step, we get (self.local_task_id, self.global_group_num_robots)
		self.local_debugger.send_to_monitor('selection: ' + str((self.local_task_id, self.global_group_num_robots)))
		self.global_energy_level = {}
		self.global_agreement = {}
		# clear energy level data for future use.

	def selection_execution(self):
		n = self.global_num_robots
		p = [self.global_energy_level[self.local_queue[0]]] * n
		k = self.global_num_tasks
		M = [[0 for i in range(k)] for j in range(n)]
		D = [[0 for i in range(k)] for j in range(n)]

		energy_sum = []
		partition_plan = []

		energy_level_queue = [self.global_energy_level[self.local_queue[i]] for i in range(n)]

		for i in range(1, n):
			p[i] = p[i-1] + energy_level_queue[i]
		
		for i in range(n):
			M[i][0] = p[i]

		for i in range(k):
			M[0][i] = energy_level_queue[i]

		for i in range(1, n):
			for j in range(1, k):
				M[i][j] = float('inf')
				for x in range(i):
					s = max(M[x][j-1], p[i]-p[x])
					if M[i][j] > s:
						M[i][j] = s
						D[i][j] = x

		partition_plan = []
		while k > 1:
			partition_plan.append(D[n-1][k-1])
			n = D[n-1][k-1] + 1
			k = k - 1
		partition_plan.reverse()

		myindex_in_queue = 0
		for i in range(self.global_num_robots):
			if self.local_id == self.local_queue[i]:
				myindex_in_queue = i
				break

		self.local_task_id = 0
		for i in range(self.global_num_tasks - 1):
			if myindex_in_queue > partition_plan[i]:
				self.local_task_id = self.local_task_id + 1

		# If only one task
		if len(partition_plan) == 0:
			self.global_group_num_robots = self.global_num_robots
		else:
			if self.local_task_id == 0:
				my_group_num = partition_plan[0] + 1
			elif self.local_task_id == self.global_num_tasks - 1:
				my_group_num = self.global_num_robots - partition_plan[-1] - 1
			else:
				my_group_num = partition_plan[self.local_task_id] - partition_plan[self.local_task_id - 1]
			self.global_group_num_robots = my_group_num
			
	def check_recv_all_energy(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_energy_level[recv_id] = recv_data['energy']
			if len(self.global_energy_level) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_all_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_negotiation_queue[recv_id] = recv_data['queue']
			if len(self.global_negotiation_queue) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_all_agreement(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_agreement[recv_id] = recv_data['end']
			if len(self.global_agreement) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	# Step1: Exchange energy level
	def selection_step1(self):
		send_data = self.get_basic_status()
		send_data['energy'] = self.local_energy_level
		self.message_communication(send_data, condition_func=self.check_recv_all_energy, time_out=3)
		if self.local_negotiation == 1:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:x[1])]
		elif self.local_negotiation == 2:
			self.local_queue = sorted(self.global_energy_level.iteritems(), key=lambda x:(x[1], x[0]), reverse = True)

	# Step2: Exchange priority queue
	def selection_step2(self):
		send_data = self.get_basic_status()
		send_data['queue'] = self.local_queue
		self.message_communication(send_data, condition_func=self.check_recv_all_queue, time_out=3)
		for key in self.global_negotiation_queue.keys():
			if self.local_queue == self.global_negotiation_queue[key]:
				self.local_negotiation_result = True
			else:
				self.local_negotiation_result = False
		self.global_negotiation_queue = {}
		return self.local_negotiation_result

	# Step3: Agreement
	def selection_step3(self):
		send_data = self.get_basic_status()
		send_data['end'] = self.local_negotiation_result
		self.message_communication(send_data, condition_func=self.check_recv_all_agreement, time_out=3)
		is_agreement = True
		for value in self.global_agreement.values():
			if value == False:
				is_agreement = False
				break
		self.global_negotiation_queue = {}
		return is_agreement

	def check_recv_mygroup_energy(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_energy_level[recv_id] = recv_data['energy']
			if len(self.global_energy_level) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_mygroup_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_negotiation_queue[recv_id] = recv_data['queue']
			if len(self.global_negotiation_queue) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_mygroup_agreement(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.local_debugger.send_to_monitor('recv (id, task_id): ' + str((recv_id, recv_task_id)))
			self.global_agreement[recv_id] = recv_data['end']
			if len(self.global_agreement) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def formation(self):
		self.formation_step1()
		is_negotiation = self.formation_step2()
		is_agreement = self.formation_step3()
		if is_agreement == False:
			while is_negotiation:
				self.local_negotiation = self.local_negotiation + 1
				self.formation_step1()
				is_negotiation = self.formation_step2()
				is_agreement = self.formation_step3()
				if is_agreement == True:
					break
				else:
					continue
		self.local_negotiation = 1
		self.formation_execution()
		# After this step, we get (self.local_task_id, self.global_group_num_robots)
		self.global_energy_level = {}
		# clear energy level data for future use.
		self.global_agreement = {}

	def formation_execution(self):
		myindex_in_queue = 0
		for i in range(self.global_num_robots):
			if self.local_id == self.local_queue[i]:
				myindex_in_queue = i
				break
		theta = (2 * math.pi) / self.global_group_num_robots * myindex_in_queue
		self.local_task_destination[0] = self.global_task_coordinate[0] + self.global_task_radius * math.cos(theta)
		self.local_task_destination[1] = self.global_task_coordinate[1] + self.global_task_radius * math.sin(theta)
		self.local_direction[0] = self.local_task_destination[0] - self.local_coordinate[0]
		self.local_direction[1] = self.local_task_destination[1] - self.local_coordinate[1]
		self.local_debugger.send_to_monitor('destination: ' + str(self.local_task_destination))

	def formation_step1(self):
		send_data = self.get_basic_status()
		send_data['energy'] = self.local_energy_level
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_energy, time_out=3)
		if self.local_negotiation == 1:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:x[1])]
		elif self.local_negotiation == 2:
			self.local_queue = sorted(self.global_energy_level.iteritems(), key=lambda x:(x[1], x[0]), reverse = True)

	def formation_step2(self):
		send_data = self.get_basic_status()
		send_data['queue'] = self.local_queue
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_queue, time_out=3)
		for key in self.global_negotiation_queue.keys():
			if self.local_queue == self.global_negotiation_queue[key]:
				self.local_negotiation_result = True
			else:
				self.local_negotiation_result = False
		self.global_negotiation_queue = {}
		return self.local_negotiation_result

	def formation_step3(self):
		send_data = self.get_basic_status()
		send_data['end'] = self.local_negotiation_result
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_agreement, time_out=3)
		is_agreement = True
		for value in self.global_agreement.values():
			if value == False:
				is_agreement = False
				break
		self.global_negotiation_queue = {}
		return is_agreement

	def check_recv_robots_coordinates(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_coordinate = recv_data['coordinate']
			# throw out the packet that has different task_id
			self.global_robots_coordinate[recv_id] = recv_coordinate
			if len(self.global_robots_coordinate) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def routing(self):
		is_collision = self.routing_step1()
		if is_collision == True:
			is_negotiation = self.routing_step2()
			is_agreement = self.routing_step3()
			if is_agreement == False:
				while is_negotiation:
					self.local_negotiation = self.local_negotiation + 1
					self.routing_step1()
					is_negotiation = self.routing_step2()
					is_agreement = self.routing_step3()
					if is_agreement == True:
						break
					else:
						continue
			self.local_negotiation = 1
			self.routing_execution()
			# After this step, we get (self.local_task_id, self.global_group_num_robots)
			self.global_energy_level = {}
			# clear energy level data for future use.
			self.global_agreement = {}
		else:
			self.walk_one_step()

	def get_cross(p1, p2, p):
		return (p2[0] - p1[0]) * (p[1] - p1[1]) -(p[0] - p1[0]) * (p2[1] - p1[1])

	def inside_point(p1, p2, p3, p4, p):
		return  get_cross(p1, p2, p) * \
				get_cross(p3, p4, p) >= 0 \
				and
				get_cross(p2, p3, p) * \
				get_cross(p4, p1, p) >= 0 \
コード例 #5
0
class Strategy_SRSS(Strategy):
	network = None
	controlNet = None
	send_data_history = None
	time_start = None 					# For task release simulation -> Future work: real dynamic change.

	local_id = 0
	local_task_id = 0
	local_energy_level = 100
	local_direction = [1, 0]			# Direction vector: not necessary to be normalized
	local_robot_radius = 10				# not in __init__
	local_coordinate = [0, 0]
	local_task_destination = [0, 0]
	local_step_size = 1
	local_go_interval = 0.5
	local_round = 0
	local_stage = 'start'
	local_step = 0
	local_negotiation = 1
	local_has_gone = 0					# How many steps you go
	local_queue = []					# [3, 1, 2] means the priority: robot-3 > robot-1 > robot-2	
	local_negotiation_result = False	# If all the queues are the same, set as True, otherwise, False
	local_collision_queue = []			# Only contains local collision queue

	global_num_robots = 1 
	global_num_tasks = 0
	global_min_require_robots = 1
	global_group_num_robots = 1
	global_energy_level = {}			# {1: 100, 2: 99, 3: 85, ...}
	global_negotiation_queue = {}		# {'1': [3, 1, 2], '2': [3, 2, 1], '3': [3, 1, 2], ...}
	global_agreement = {}				# {'1': True, '2': False, '3': True, ...}
	global_task_list = []				# [{'duration': 100, 'raduis': 20, 'coordinate': [100, 100]}, {'duration': 150, 'raduis': 30, 'coordinate': [200, 150]}, ...]
	global_new_task_list = []			# Same as 
	global_robots_task_distance = {}	# Used in formation: the distance matrix - robots vs. location of the task
	global_robots_coordinate = {}		# {1: [xx, yy], ...}
	global_robots_polygon = {}			# {1: [(x1, y1), (x2, y2), (x3, y3), (x4, y4)], ...}
	global_collision_queue = {}			# {1: [3, 1], 2: [], 3: [3, 4], ...}
	global_robots_task_id = {}			# {1: 2, 2:1, 3:1, ...} Only used in routing - first priority
	global_deadlock = {}
	global_is_finish_task = {}			# {1: True, 4: False, 8: False} Only consider about my group
	global_time_step = 0				# For better logging and collecting data

	local_debugger = None

	def __init__(self, id, \
				coordinate=[50, 50], \
				direction=[1, 1], \
				step_size=1, \
				robot_radius=10, \
				energy_level=100, \
				go_interval=0.5, \
				num_robots=1, \
				controlNet='172.16.0.254'):
		self.local_id = id
		self.local_coordinate = coordinate
		self.local_direction = direction
		self.local_step_size = step_size
		self.local_robot_radius = robot_radius
		self.local_energy_level = energy_level
		self.local_go_interval = go_interval
		self.global_num_robots = num_robots
		self.controlNet = controlNet
		self.network = NetworkInterface(port=19999)
		self.network.initSocket()
		self.network.startReceiveThread()
		# Debugger tool:
		self.local_debugger = COREDebuggerVirtual((controlNet, 12888), path='/home/rick/Documents/research/SRSS/log', filename=str(self.local_id))
		self.time_start = time.time()
		self.local_debugger.log_local('Start.', tag='Status')
		self.local_debugger.send_to_monitor({'id': self.local_id, 'coordinate': self.local_coordinate}, tag='Status')

	def checkFinished(self):
		return (math.fabs(self.local_task_destination[0] - self.local_coordinate[0]) < self.local_step_size and \
				math.fabs(self.local_task_destination[1] - self.local_coordinate[1]) < self.local_step_size)

	def go(self):
		self.local_debugger.log_local('%.2f' % self.local_energy_level, tag='Battery Energy')
		if self.local_stage == 'start':
			# Wait until new task arrives
			if self.global_num_tasks > 0:
				self.local_stage = 'selection'
			else:
				self.local_energy_level = self.local_energy_level - 0.04
				time.sleep(1)
			# self.global_condition_func()
		elif self.local_stage == 'selection':
			self.global_is_finish_task = {}
			self.local_round = self.local_round + 1
			self.local_debugger.log_local('Selection Start.', tag='Status')
			self.selection()
			self.local_debugger.log_local('Selection End: Do Task %d.' % self.local_task_id, tag='Status')
			self.local_stage = 'formation'
		elif self.local_stage == 'formation':
			self.local_debugger.log_local('Formation Start.', tag='Status')
			self.formation()
			# Formation End printed in formation step3
			self.local_stage = 'routing'
		elif self.local_stage == 'routing':
			self.global_time_step = self.global_time_step + 1
			self.local_debugger.log_local('Routing Start.', tag='Status')
			if self.checkFinished():
				self.local_debugger.send_to_monitor('I finished my task!')
				self.local_debugger.log_local('Task Finished.', tag='Status')
				self.local_stage = 'end'
			else:
				if not self.check_new_tasks():
					self.broadcast_coordinate()	# should broadcast original coodinate and polygon before routing.
				else:
					self.reallocate_tasks()
					return
				if not self.check_new_tasks():
					self.broadcast_polygon()
				else:
					self.reallocate_tasks()
					return
				if not self.check_new_tasks():
					self.routing()
				else:
					self.reallocate_tasks()
					return
		elif self.local_stage == 'end':
			self.global_time_step = self.global_time_step + 1
			if not self.check_new_tasks():
				self.broadcast_coordinate()
			else:
				self.reallocate_tasks()
				return
			if not self.check_new_tasks():
				self.broadcast_polygon()
			else:
				self.reallocate_tasks()
				return
			if not self.check_new_tasks():
				self.routing()
			else:
				self.reallocate_tasks()
				return
			# default stage is 'end'
			# if new tasks are released: local_stage -> 'start'
		else:
			print('Unknown state.')
		time.sleep(self.local_go_interval)
		self.reallocate_tasks()
		
	def reallocate_tasks(self):
		if self.local_stage != 'selection' and self.local_stage != 'formation':
			num_tasks_now = sum([i['start'] <= time.time()-self.time_start for i in self.global_task_list])
			if self.global_num_tasks != num_tasks_now:
				self.global_num_tasks = num_tasks_now
				self.local_stage = 'selection'
				self.local_debugger.log_local('A New Task Released.', tag='Task')
				self.local_debugger.send_to_monitor('A New Task Released.', tag='Task')
		if self.local_id == 1:
			if self.global_num_tasks != 0:
				self.local_debugger.send_to_monitor({'new_task': True, 'coordinate': [int(self.global_task_list[self.global_num_tasks-1]['coordinate'][0]), \
																				 	 int(self.global_task_list[self.global_num_tasks-1]['coordinate'][1])]}, tag='Status')

	def check_new_tasks(self):
		if self.local_stage != 'selection' and self.local_stage != 'formation':
			num_tasks_now = sum([i['start'] <= time.time()-self.time_start for i in self.global_task_list])
			if self.global_num_tasks != num_tasks_now:
				return True
			else:
				return False
		else:
			return False

	def check_recv_is_finish_task(self):
		if sum([i == True for i in self.global_is_finish_task.values()]) == self.global_group_num_robots:
			return True
		else:
			return False

	def global_condition_func(self, recv_data):
		pass

	def message_communication(self, send_data, condition_func, time_out=10):
		# input: send_data is a dictionary
		# output: recv_data is also a dictionary
		# new task release: trigger a new round of <selection-formation-routing>
		while True:
			self.local_energy_level = self.local_energy_level - 0.01
			# This is for preventing them to stuck here if everyone finished task
			if self.check_new_tasks():
				return
			time_start = time.time()
			self.network.sendStringData(send_data)
			# self.local_debugger.send_to_monitor('send: ' + str(send_data))
			while time.time() - time_start < time_out:
				try:
					recv_data = self.network.retrieveData()
					if recv_data != None:
						# self.local_debugger.send_to_monitor('recv: ' + str(recv_data))
						# if new task is released
						self.global_condition_func(recv_data)
						if condition_func(recv_data) == True:
							self.send_data_history = send_data
							return recv_data
						else:
							continue
					else:
						continue
				except Exception as e:
					raise e
			self.network.sendStringData(self.send_data_history)
				
	def get_basic_status(self):
		status_dict = { \
						'id': self.local_id,
						'round': self.local_round,
						'stage': self.local_stage
						}
		return status_dict

	def selection(self):
		self.selection_step1()
		is_negotiation = self.selection_step2()
		is_agreement = self.selection_step3()
		if is_agreement == False:
			while is_negotiation:
				self.local_negotiation = self.local_negotiation + 1
				self.selection_step1()
				is_negotiation = self.selection_step2()
				is_agreement = self.selection_step3()
				if is_agreement == True:
					break
				else:
					continue
		self.local_negotiation = 1
		self.selection_execution()
		# After this step, we get (self.local_task_id, self.global_group_num_robots)
		self.local_debugger.send_to_monitor('selection: ' + str((self.local_task_id, self.global_group_num_robots)))
		self.global_energy_level = {}
		self.global_agreement = {}
		# clear energy level data for future use.

	def selection_execution(self):
		n = self.global_num_robots
		p = [self.global_energy_level[self.local_queue[0]]] * n
		k = self.global_num_tasks
		M = [[0 for i in range(k)] for j in range(n)]
		D = [[0 for i in range(k)] for j in range(n)]

		energy_sum = []
		partition_plan = []

		energy_level_queue = [self.global_energy_level[self.local_queue[i]] for i in range(n)]

		for i in range(1, n):
			p[i] = p[i-1] + energy_level_queue[i]
		
		for i in range(n):
			M[i][0] = p[i]

		for i in range(k):
			M[0][i] = energy_level_queue[i]

		for i in range(1, n):
			for j in range(1, k):
				M[i][j] = float('inf')
				for x in range(i):
					s = max(M[x][j-1], p[i]-p[x])
					if M[i][j] > s:
						M[i][j] = s
						D[i][j] = x

		partition_plan = []
		while k > 1:
			partition_plan.append(D[n-1][k-1])
			n = D[n-1][k-1] + 1
			k = k - 1
		partition_plan.reverse()

		myindex_in_queue = 0
		for i in range(self.global_num_robots):
			if self.local_id == self.local_queue[i]:
				myindex_in_queue = i
				break

		self.local_task_id = 0
		for i in range(self.global_num_tasks - 1):
			if myindex_in_queue > partition_plan[i]:
				self.local_task_id = self.local_task_id + 1

		# If only one task
		if len(partition_plan) == 0:
			self.global_group_num_robots = self.global_num_robots
		else:
			if self.local_task_id == 0:
				my_group_num = partition_plan[0] + 1
			elif self.local_task_id == self.global_num_tasks - 1:
				my_group_num = self.global_num_robots - partition_plan[-1] - 1
			else:
				my_group_num = partition_plan[self.local_task_id] - partition_plan[self.local_task_id - 1]
			self.global_group_num_robots = my_group_num
			
	def check_recv_all_energy(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_energy_level[recv_id] = recv_data['energy']
			if len(self.global_energy_level) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_all_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_negotiation_queue[recv_id] = recv_data['queue']
			if len(self.global_negotiation_queue) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_all_agreement(self, recv_data):
		try:
			recv_id = recv_data['id']
			self.global_agreement[recv_id] = recv_data['end']
			if len(self.global_agreement) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	# Step1: Exchange energy level
	def selection_step1(self):
		send_data = self.get_basic_status()
		send_data['energy'] = self.local_energy_level
		self.message_communication(send_data, condition_func=self.check_recv_all_energy, time_out=0.01)
		if self.local_negotiation == 1:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:x[1])]
		elif self.local_negotiation == 2:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:(x[1], x[0]))]

	# Step2: Exchange priority queue
	def selection_step2(self):
		send_data = self.get_basic_status()
		send_data['queue'] = self.local_queue
		self.message_communication(send_data, condition_func=self.check_recv_all_queue, time_out=0.01)
		self.local_negotiation_result = False
		for key in self.global_negotiation_queue.keys():
			if self.local_queue == self.global_negotiation_queue[key]:
				continue
			else:
				self.local_negotiation_result = True
				break
		self.global_negotiation_queue = {}
		return self.local_negotiation_result

	# Step3: Agreement
	def selection_step3(self):
		send_data = self.get_basic_status()
		send_data['end'] = self.local_negotiation_result
		self.message_communication(send_data, condition_func=self.check_recv_all_agreement, time_out=0.01)
		is_agreement = True
		for value in self.global_agreement.values():
			if value == True:
				is_agreement = False
				break
		self.global_agreement = {}
		return is_agreement

	def check_recv_mygroup_energy(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_energy_level[recv_id] = recv_data['energy']
			if len(self.global_energy_level) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_mygroup_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_negotiation_queue[recv_id] = recv_data['queue']
			if len(self.global_negotiation_queue) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_mygroup_agreement(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_agreement[recv_id] = recv_data['end']
			if len(self.global_agreement) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_mygroup_distance(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_task_id != self.local_task_id:
				return
			self.global_robots_task_distance[recv_id] = recv_data['dist']
			if len(self.global_robots_task_distance) == self.global_group_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def formation(self):
		self.formation_step1()
		is_negotiation = self.formation_step2()
		is_agreement = self.formation_step3()
		if is_agreement == False:
			while is_negotiation:
				self.local_negotiation = self.local_negotiation + 1
				self.formation_step1()
				is_negotiation = self.formation_step2()
				is_agreement = self.formation_step3()
				if is_agreement == True:
					break
				else:
					continue
		self.local_negotiation = 1
		self.formation_execution()
		# After this step, we get (self.local_task_id, self.global_group_num_robots)
		self.global_energy_level = {}
		# clear energy level data for future use.
		self.global_agreement = {}
		self.global_robots_task_distance = {}

	def formation_execution(self):
		# Computing the distances to the different task locations
		dist_vector = []
		for i in range(self.global_group_num_robots):
			theta = (2 * math.pi) / self.global_group_num_robots * i
			task_coordinate = np.array(self.global_task_list[self.local_task_id]['coordinate'])
			task_radius = self.global_task_list[self.local_task_id]['radius']
			task_destination = task_coordinate + np.array([task_radius * math.cos(theta), task_radius * math.sin(theta)])
			task_dist = np.linalg.norm(task_destination - np.array(self.local_coordinate))
			dist_vector.append(task_dist)
		# Send the distance vector to others
		send_data = self.get_basic_status()
		send_data['dist'] = dist_vector
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_distance, time_out=0.01)
		dist_matrix = self.global_robots_task_distance
		# Everyone look at the distance matrix and use the consensus queue to sequentially choose task.
		myindex_in_queue = 0
		for i in self.local_queue:
			task_chosen = dist_matrix[i].index(min(dist_matrix[i]))
			# task_chosen = dist_matrix[i].index(max(dist_matrix[i]))
			if i == self.local_id:
				myindex_in_queue = task_chosen
				break
			for j in dist_matrix:
				dist_matrix[j][task_chosen] = float('inf')
				# dist_matrix[j][task_chosen] = float('-inf')
		theta = (2 * math.pi) / self.global_group_num_robots * myindex_in_queue
		my_task_coordinate = self.global_task_list[self.local_task_id]['coordinate']
		my_task_radius = self.global_task_list[self.local_task_id]['radius']
		self.local_task_destination[0] = my_task_coordinate[0] + my_task_radius * math.cos(theta)
		self.local_task_destination[1] = my_task_coordinate[1] + my_task_radius * math.sin(theta)
		self.local_direction[0] = self.local_task_destination[0] - self.local_coordinate[0]
		self.local_direction[1] = self.local_task_destination[1] - self.local_coordinate[1]
		self.local_debugger.send_to_monitor('formation: index = ' + str(myindex_in_queue))
		self.local_debugger.log_local('Formation End: To Position %d.' % myindex_in_queue, tag='Status')

	def formation_step1(self):
		send_data = self.get_basic_status()
		send_data['energy'] = self.local_energy_level
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_energy, time_out=0.01)
		if self.local_negotiation == 1:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:x[1])]
			# self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:x[1], reverse=True)]
		elif self.local_negotiation == 2:
			self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:(x[1], x[0]))]
			# self.local_queue = [i[0] for i in sorted(self.global_energy_level.items(), key=lambda x:(x[1], x[0]), reverse=True)]

	def formation_step2(self):
		send_data = self.get_basic_status()
		send_data['queue'] = self.local_queue
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_queue, time_out=0.01)
		self.local_negotiation_result = False
		for key in self.global_negotiation_queue.keys():
			if self.local_queue == self.global_negotiation_queue[key]:
				continue
			else:
				self.local_negotiation_result = True
				break
		self.global_negotiation_queue = {}
		return self.local_negotiation_result

	def formation_step3(self):
		send_data = self.get_basic_status()
		send_data['end'] = self.local_negotiation_result
		send_data['task_id'] = self.local_task_id
		self.message_communication(send_data, condition_func=self.check_recv_mygroup_agreement, time_out=0.01)
		is_agreement = True
		for value in self.global_agreement.values():
			if value == True:
				is_agreement = False
				break
		self.global_agreement = {}
		return is_agreement

	def check_recv_robots_coordinates(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_coordinate = recv_data['coordinate']
			recv_task_id = recv_data['task_id']
			recv_is_finished = recv_data['is_finish']
			# throw out the packet that has different task_id
			self.global_robots_coordinate[recv_id] = recv_coordinate
			if recv_task_id == self.local_task_id:
				self.global_is_finish_task[recv_id] = recv_data['is_finish']
			if len(self.global_robots_coordinate) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_robots_polygons(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_polygon = recv_data['polygon']
			# throw out the packet that has different task_id
			self.global_robots_polygon[recv_id] = recv_polygon
			if len(self.global_robots_polygon) == self.global_num_robots:
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_collision_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_collision = recv_data['collision_queue']
			# throw out the packet that has different task_id
			self.global_collision_queue[recv_id] = recv_collision
			if len(self.global_collision_queue) == self.global_num_robots:
				return True
			else: 
				#self.local_debugger.send_to_monitor('collision_queue: %d %d' % (len(self.global_collision_queue), self.global_num_robots))
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_local_collision_task_id(self, recv_data):
		try:
			recv_id = recv_data['id']
			recv_task_id = recv_data['task_id']
			# throw out the packet that has different task_id
			if recv_id in self.local_collision_queue:
				self.global_robots_task_id[recv_id] = recv_task_id
			if len(self.global_robots_task_id) == len(self.local_collision_queue):
				return True
			else:
				#self.local_debugger.send_to_monitor('collision_taskid: %d %d' % (len(self.global_robots_task_id), len(self.local_collision_queue)))
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_local_collision_energy(self, recv_data):
		try:
			recv_id = recv_data['id']
			# throw out the packet that has different task_id
			if recv_id in self.local_collision_queue:
				self.global_energy_level[recv_id] = recv_data['energy']
			if len(self.global_energy_level) == len(self.local_collision_queue):
				return True
			else:
				#self.local_debugger.send_to_monitor('collision_taskid: %d %d' % (len(self.global_robots_task_id), len(self.local_collision_queue)))
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_local_collision_queue(self, recv_data):
		try:
			recv_id = recv_data['id']
			if recv_id in self.local_collision_queue:
				self.global_negotiation_queue[recv_id] = recv_data['queue']
			if len(self.global_negotiation_queue) == len(self.local_collision_queue):
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_local_collision_agreement(self, recv_data):
		try:
			recv_id = recv_data['id']
			if recv_id in self.local_collision_queue:
				self.global_agreement[recv_id] = recv_data['end']
			if len(self.global_agreement) == len(self.local_collision_queue):
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def check_recv_deadlock(self, recv_data):
		try:
			recv_id = recv_data['id']
			if recv_id in self.local_collision_queue:
				self.global_deadlock[recv_id] = recv_data['deadlock']
			if len(self.global_deadlock) == len(self.local_collision_queue):
				return True
			else:
				return False
		except KeyError:
			pass
		except Exception as e:
			raise e

	def routing(self):
		self.routing_step1()
		is_collision = self.routing_step2()		# Generate a local collision queue with in-group consensus
		if is_collision == True:
			self.routing_step3()				# Generate a priority queue
			is_negotiation = self.routing_step4()
			is_agreement = self.routing_step5()
			if is_agreement == False:
				while is_negotiation:
					self.local_negotiation = self.local_negotiation + 1
					self.routing_step3()
					is_negotiation = self.routing_step4()
					is_agreement = self.routing_step5()
					if is_agreement == True:
						break
					else:
						continue
			self.local_negotiation = 1
			self.routing_execution()
			self.global_collision_queue = {}
			self.global_robots_task_id = {}
			self.global_energy_level = {}
			self.global_negotiation_queue = {}
			self.global_agreement = {}
			self.global_deadlock = {}
		else:
			self.walk_one_step()

	def rectangle_transform(self, rectangle, direction, local_coordinate):
		vertices = np.transpose(np.array([[rectangle[0][0], rectangle[0][1]], \
										  [rectangle[1][0], rectangle[1][1]], \
										  [rectangle[2][0], rectangle[2][1]], \
										  [rectangle[3][0], rectangle[3][1]]]))
		rotation_matrix = np.array([[math.cos(direction), - math.sin(direction)], \
									[math.sin(direction), math.cos(direction)]])
		new_vertices = np.matmul(rotation_matrix, vertices)
		update_coordinate = np.transpose(new_vertices + [[local_coordinate[0]], [local_coordinate[1]]])

		return update_coordinate

	def vector_transform(self, vector, direction, local_coordinate):
		vertices = np.transpose(np.array([[vector[0][0], vector[0][1]], \
										  [vector[1][0], vector[1][1]]]))
		rotation_matrix = np.array([[math.cos(direction), - math.sin(direction)], \
									[math.sin(direction), math.cos(direction)]])
		new_vertices = np.matmul(rotation_matrix, vertices)
		update_coordinate = np.transpose(new_vertices + [[local_coordinate[0]], [local_coordinate[1]]])

		return update_coordinate

	# Step1: Collision Detection
	def routing_step1(self):
		if self.local_direction[0] != 0:
			direction_angle = math.atan(self.local_direction[1] / self.local_direction[0])
		else:
			direction_angle = 0
		my_raw_rectangle = [[-self.local_robot_radius, self.local_robot_radius], 
							[-self.local_robot_radius, -self.local_robot_radius],
							[self.local_robot_radius + self.local_step_size, -self.local_robot_radius],
							[self.local_robot_radius + self.local_step_size, self.local_robot_radius]]
		my_rectangle = self.rectangle_transform(my_raw_rectangle, direction_angle, self.local_coordinate)
		p1 = Polygon([	(my_rectangle[0][0], my_rectangle[0][1]), 
						(my_rectangle[1][0], my_rectangle[1][1]), 
						(my_rectangle[2][0], my_rectangle[2][1]), 
						(my_rectangle[3][0], my_rectangle[3][1])])
			
		self.local_queue = []
		for index in range(self.global_num_robots):
			i = index + 1
			if i != self.local_id:
				p2 = Polygon(self.global_robots_polygon[i])
				if p1.intersects(p2):
					self.local_queue.append(i)
		if len(self.local_queue) > 0:
			self.local_queue.append(self.local_id)
		# After this step, only get the "potential" collision queue

	# Generate local collision queue: unique 'set' but is not unique 'queue'
	def routing_step2(self):
		send_data = self.get_basic_status()
		send_data['collision_queue'] = self.local_queue
		self.global_collision_queue = {}
		self.message_communication(send_data, condition_func=self.check_recv_collision_queue, time_out=0.01)
		u = unionfind(self.global_collision_queue.values())
		u.createtree()
		collision_queues = u.printree()
		self.local_collision_queue = []
		for queue in collision_queues:
			if self.local_id in queue:
				self.local_collision_queue = queue
				break
		# After this step, get the final local consensus collision queue
		if len(self.local_collision_queue) > 0:
			return True
		else:
			return False

	# Communicate task id as the first priority
	def routing_step3(self):
		send_data = self.get_basic_status()
		send_data['task_id'] = self.local_task_id
		self.global_robots_task_id = {}
		# TODO: check_recv_local_collision_task_id not exists
		self.message_communication(send_data, condition_func=self.check_recv_local_collision_task_id, time_out=0.01)
		send_data = self.get_basic_status()
		send_data['energy'] = self.local_energy_level
		self.global_energy_level = {}
		# TODO: check_recv_local_collision_task_id not exists
		self.message_communication(send_data, condition_func=self.check_recv_local_collision_energy, time_out=0.01)
		taskid_energy = [(i, self.global_robots_task_id[i], self.global_energy_level[i]) for i in self.local_collision_queue]
		if self.local_negotiation == 1:
			self.local_queue = [i[0] for i in sorted(taskid_energy, key=lambda x:(x[1], x[2]))]
		# # 	# self.local_queue = [i[0] for i in sorted(taskid_energy, key=lambda x:(x[1], x[2], x[0]))]
			# self.local_queue = [i[0] for i in sorted(taskid_energy, key=lambda x:(x[1], -x[2]))]
		elif self.local_negotiation == 2:
			self.local_queue = [i[0] for i in sorted(taskid_energy, key=lambda x:(x[2], x[0]))]
			# self.local_queue = [i[0] for i in sorted(taskid_energy, key=lambda x:(x[2], x[0]), reverse=True)]

	# Exchange Priority queue: Exactly same as selection part - step2
	def routing_step4(self):
		send_data = self.get_basic_status()
		send_data['queue'] = self.local_queue
		self.message_communication(send_data, condition_func=self.check_recv_local_collision_queue, time_out=0.01)
		self.local_negotiation_result = False
		for key in self.global_negotiation_queue.keys():
			if self.local_queue == self.global_negotiation_queue[key]:
				continue
			else:
				self.local_negotiation_result = True
				break
		self.global_negotiation_queue = {}
		return self.local_negotiation_result

	# Agreement: Also the same as selection - step3
	def routing_step5(self):
		send_data = self.get_basic_status()
		send_data['end'] = self.local_negotiation_result
		self.message_communication(send_data, condition_func=self.check_recv_local_collision_agreement, time_out=0.01)
		is_agreement = True
		for value in self.global_agreement.values():
			if value == True:
				is_agreement = False
				break
		self.global_agreement = {}
		return is_agreement

	def routing_execution(self):
		# Loop until deadlock dismisses
		while True:
			self.global_deadlock = {}
			if self.local_id == self.local_queue[0]:
				dist_queue = {}
				for robot_id in self.local_queue:
					if robot_id != self.local_id:
						dist = np.linalg.norm([self.global_robots_coordinate[robot_id][0][1] - self.local_coordinate[1], \
												self.global_robots_coordinate[robot_id][0][0] - self.local_coordinate[0]])
						dist_queue[robot_id] = dist
				ordered_queue = [i[0] for i in sorted(dist_queue.items(), key=lambda x:x[1])]

				is_deadlock = True
				if not self.checkFinished():
					closest_robot_coordinate = np.array(self.global_robots_coordinate[ordered_queue[0]][0])
					my_coordinate = np.array(self.local_coordinate)
					my_direction = np.array(self.local_direction)

					# theta = boundary tangent angle not to collide
					theta = math.atan(2 * self.local_robot_radius / (np.linalg.norm(closest_robot_coordinate - my_coordinate) - self.local_robot_radius * 2))

					# theta1 = acos(a`b/(|a||b|))
					relative_direction = closest_robot_coordinate - my_coordinate
					theta1 = math.acos(np.inner(my_direction, relative_direction) / (np.linalg.norm(my_direction) * np.linalg.norm(relative_direction)))
					if self.local_direction[0] != 0:
						my_angle = math.atan(self.local_direction[1] / self.local_direction[0])
					else:
						my_angle = math.pi / 2

					if theta1 < theta:
						# new_angle = my_angle + theta - theta1 + 10 * math.pi / 180
						new_angle = my_angle + theta - theta1 + 10 * math.pi / 180 + 7
					else:
						new_angle = my_angle

					self.local_direction = [math.cos(new_angle), math.sin(new_angle)]
					is_deadlock = False
				else: # I have finish. I will not move
					is_deadlock = True

				send_data = self.get_basic_status()
				send_data['deadlock'] = is_deadlock
				self.message_communication(send_data, condition_func=self.check_recv_deadlock, time_out=0.01)

				if is_deadlock == False:
					self.walk_one_step()
					break
				else:
					# shift my local_queue: put myself to the last
					self.local_queue = self.local_queue[1:] + self.local_queue[0:1]
			else:
				# I am not the first one in queue
				send_data = self.get_basic_status()
				send_data['deadlock'] = False
				self.message_communication(send_data, condition_func=self.check_recv_deadlock, time_out=0.01)
				# The first one in queue has deadlock -> shift
				if self.global_deadlock[self.local_queue[0]] == True:
					self.local_queue = self.local_queue[1:] + self.local_queue[0:1]
				else:
					# deadlock released, keep in place
					self.local_debugger.log_local('Routing %d: Walk: %d' % (self.global_time_step, self.local_has_gone), tag='Status')
					self.local_energy_level = self.local_energy_level - 0.04
					break

	def broadcast_coordinate(self):
		# Coordinates of current and next
		L2norm = math.sqrt(self.local_direction[0] * self.local_direction[0] + self.local_direction[1] * self.local_direction[1])
		if L2norm != 0 and not self.checkFinished():
			cur_next_coordinate = [[self.local_coordinate[0], self.local_coordinate[1]], \
									[self.local_coordinate[0] + self.local_step_size * self.local_direction[0] / L2norm, \
									 self.local_coordinate[1] + self.local_step_size * self.local_direction[1] / L2norm]]
		else:
			cur_next_coordinate = [[self.local_coordinate[0], self.local_coordinate[1]], \
								[self.local_coordinate[0], self.local_coordinate[1]]]
		send_data = self.get_basic_status()
		send_data['coordinate'] = cur_next_coordinate
		send_data['task_id'] = self.local_task_id
		send_data['is_finish'] = self.checkFinished()
		self.global_robots_coordinate = {}
		self.message_communication(send_data, condition_func=self.check_recv_robots_coordinates, time_out=0.01)

	def broadcast_polygon(self):
		# Polygon 
		send_data = self.get_basic_status()
		if self.local_direction[0] != 0:
			direction_angle = math.atan(self.local_direction[1] / self.local_direction[0])
		else:
			direction_angle = 0
		my_raw_rectangle = [[-self.local_robot_radius, self.local_robot_radius], 
							[-self.local_robot_radius, -self.local_robot_radius],
							[self.local_robot_radius + self.local_step_size, -self.local_robot_radius],
							[self.local_robot_radius + self.local_step_size, self.local_robot_radius]]
		my_rectangle = self.rectangle_transform(my_raw_rectangle, direction_angle, self.local_coordinate)
		polygon = [	(my_rectangle[0][0], my_rectangle[0][1]), 
					(my_rectangle[1][0], my_rectangle[1][1]), 
					(my_rectangle[2][0], my_rectangle[2][1]), 
					(my_rectangle[3][0], my_rectangle[3][1])]
		send_data['polygon'] = polygon
		self.global_robots_polygon = {}
		self.message_communication(send_data, condition_func=self.check_recv_robots_polygons, time_out=0.01)

	def walk_one_step(self):
		if not self.checkFinished():
			L2norm = math.sqrt(self.local_direction[0] * self.local_direction[0] + self.local_direction[1] * self.local_direction[1])
			if L2norm != 0:
				self.local_coordinate[0] = self.local_coordinate[0] + self.local_step_size * self.local_direction[0] / L2norm
				self.local_coordinate[1] = self.local_coordinate[1] + self.local_step_size * self.local_direction[1] / L2norm
				# Return to the task direction even if you change direction in routing in last step
				self.local_direction[0] = self.local_task_destination[0] - self.local_coordinate[0]
				self.local_direction[1] = self.local_task_destination[1] - self.local_coordinate[1]
				self.local_debugger.send_to_monitor({'id': self.local_id, 'coordinate': self.local_coordinate}, tag='Status')
				self.local_debugger.log_local({'id': self.local_id, 'coordinate': self.local_coordinate}, tag='Status')

				# # show in the core
				# core_cmd = "coresendmsg -a %s node number=%s xpos=%s ypos=%s" % (self.controlNet, \
				# 																self.local_id, \
				# 																str(int(self.local_coordinate[0])), \
				# 																str(int(self.local_coordinate[1])))
				# os.system(core_cmd)

				self.local_energy_level = self.local_energy_level - 0.1
				self.local_has_gone = self.local_has_gone + 1
			else:
				# If direction vector is 0-vector, keep in place
				self.local_energy_level = self.local_energy_level - 0.04
				pass
		self.local_debugger.log_local('Routing %d: Walk: %d' % (self.global_time_step, self.local_has_gone), tag='Status')
コード例 #6
0
class StrategyJaxRendezvous(Strategy):
    mouse = None
    network = None
    finished = False
    numNeighbors = 0
    neighborInfo = {}
    centroid = []
    group = []
    groupCentroid = []
    weights = []
    visited = []
    path = []
    leader = 0
    stayPut = False
    backTrack = False
    maxPathLength = 16
    timeStep = 0

    #TODO find better way to eliminated following if through walls
    #TODO parameterize timeStep, weighting, and max path length

    def __init__(self, mouse, numNeighbors, initLocations):
        self.weights = [0, 0, 0, 0]
        self.centroid = [-1, -1]
        self.groupCentroid = [-1, -1]
        self.stop = [-1, -1]
        self.mouse = mouse
        self.leader = self.mouse.id
        self.numNeighbors = numNeighbors
        for key, value in initLocations.items():
            if key is not self.mouse.id:
                self.neighborInfo[key] = {
                    'x': value[0],
                    'y': value[1],
                    'direction': 'UP'
                }
                if key < self.leader: self.leader = key
        self.visited = [[-1 for i in range(self.mouse.mazeMap.width)]
                        for j in range(self.mouse.mazeMap.height)]
        self.visited[self.mouse.x][self.mouse.y] = self.mouse.id
        self.network = NetworkInterface()
        self.network.initSocket()
        self.network.startReceiveThread()

    def checkFinished(self):
        x = 0
        y = 0
        self.finished = True
        if len(self.neighborInfo) is not self.numNeighbors:
            self.finished = False
            return self.finished
        for value in self.neighborInfo.values():
            x = value['x'] - self.mouse.x
            y = value['y'] - self.mouse.y
            if math.sqrt((x * x) + (y * y)) < 1.0:
                self.finished = False
                break
        self.finished = False
        return self.finished

    def isAtCentroid(self):
        x = self.mouse.x - self.centroid[0]
        y = self.mouse.y - self.centroid[1]
        if math.sqrt((x * x) + (y * y)) is 0.0:
            return True
        else:
            return False

    #determines if mouse is surrounded by walls
    #if it is it will move in that direction
    def checkFreedom(self):
        freedom = []
        if self.mouse.canGoLeft():
            freedom.append('left')
        if self.mouse.canGoRight():
            freedom.append('right')
        if self.mouse.canGoUp():
            freedom.append('up')
        if self.mouse.canGoDown():
            freedom.append('down')
        return freedom

    #returns len(group)
    def refineGroup(self, threshold):
        if len(self.group) is 0: return 0
        withinThreshold = True
        distSqNeighbors = 0
        for item in self.group:
            x = self.neighborInfo[item]['x'] - self.mouse.x
            y = self.neighborInfo[item]['y'] - self.mouse.y
            distSqNeighbors = (x * x) + (y * y)
            if distSqNeighbors > threshold * threshold:
                self.group.remove(item)
        return len(self.group)

    #returns true if all bots within threshold
    def checkGroupDist(self, distance):
        withinThreshold = True
        distSqNeighbors = 0
        for item in self.group:
            x = self.neighborInfo[item]['x'] - self.mouse.x
            y = self.neighborInfo[item]['y'] - self.mouse.y
            distSqNeighbors = (x * x) + (y * y)
            if distSqNeighbors > distance * distance:
                withinThreshold = False
                break

        return withinThreshold

    #returns max distance squared of group member to group centroid
    def calcMaxDistFromGroupCentroid(self):
        if len(self.group) is 0 or self.groupCentroid is [-1, -1]:
            return sys.maxsize
        x = self.groupCentroid[0] - self.mouse.x
        y = self.groupCentroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        maxDist = distSq
        for item in self.group:
            x = self.groupCentroid[0] - self.neighborInfo[item]['x']
            y = self.groupCentroid[1] - self.neighborInfo[item]['y']
            distSq = (x * x) + (y * y)
            if distSq > maxDist: distSq = maxDist
        return maxDist

    #returns max distance squared of member to centroid
    def calcMaxDistFromCentroid(self):
        if len(self.neighborInfo) < self.numNeighbors or self.centroid is [
                -1, -1
        ]:
            return sys.maxsize
        x = self.centroid[0] - self.mouse.x
        y = self.centroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        maxDist = distSq
        for value in self.neighborInfo.values():
            x = self.centroid[0] - value['x']
            y = self.centroid[1] - value['y']
            distSq = (x * x) + (y * y)
            if distSq > maxDist: distSq = maxDist
        return maxDist

    #returns true if closest to centroid
    def isClosestToGroupCentroid(self):
        if len(self.group) is 0 or self.groupCentroid is [-1, -1]:
            return sys.maxsize
        x = self.groupCentroid[0] - self.mouse.x
        y = self.groupCentroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        currentValue = distSq
        isClosest = True
        for item in self.group:
            x = self.groupCentroid[0] - self.neighborInfo[item]['x']
            y = self.groupCentroid[1] - self.neighborInfo[item]['y']
            distSq = (x * x) + (y * y)
            if distSq < currentValue:
                isClosest = False
                break
        return isClosest

    #returns true if closest to group centroid
    def isClosestToCentroid(self):
        if len(self.neighborInfo) < self.numNeighbors or self.centroid is [
                -1, -1
        ]:
            return False
        x = self.centroid[0] - self.mouse.x
        y = self.centroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        currentValue = distSq
        isClosest = True
        for value in self.neighborInfo.values():
            x = self.centroid[0] - value[item]['x']
            y = self.centroid[1] - value[item]['y']
            distSq = (x * x) + (y * y)
            if distSq <= currentValue:
                isClosest = False
                break
        return isClosest

    #returns true if closest to group centroid and all within threshold
    def checkClosenessToGroupCentroid(self, threshold):
        if len(self.group) is 0 or self.groupCentroid is [-1, -1]:
            return sys.maxsize
        x = self.groupCentroid[0] - self.mouse.x
        y = self.groupCentroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        currentValue = distSq
        if currentValue > threshold * threshold:
            return False
        isClosest = True
        for item in self.group:
            x = self.groupCentroid[0] - self.neighborInfo[item]['x']
            y = self.groupCentroid[1] - self.neighborInfo[item]['y']
            distSq = (x * x) + (y * y)
            if distSq < currentValue or distSq > threshold * threshold:
                isClosest = False
                break
        return isClosest

    #returns true if closest to centroid and all within threshold
    def checkClosenessToCentroid(self, threshold):
        if len(self.neighborInfo) < self.numNeighbors or self.centroid is [
                -1, -1
        ]:
            return False
        x = self.centroid[0] - self.mouse.x
        y = self.centroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        currentValue = distSq
        if currentValue > threshold * threshold:
            return False
        isClosest = True
        for value in self.neighborInfo.values():
            x = self.centroid[0] - value['x']
            y = self.centroid[1] - value['y']
            distSq = (x * x) + (y * y)
            if distSq <= currentValue or distSq > threshold * threshold:
                isClosest = False
                break
        return isClosest

    #returns true if all bots within threshold and removes bots outside maxDist
    def refineAndCheckGroupDist(self, threshold, distance):
        withinThreshold = True
        distSqNeighbors = 0
        for item in self.group:
            x = self.neighborInfo[item]['x'] - self.mouse.x
            y = self.neighborInfo[item]['y'] - self.mouse.y
            distSqNeighbors = (x * x) + (y * y)
            if distSqNeighbors > threshold * threshold:
                self.group.remove(item)
            if distSqNeighbors > distance * distance:
                withinThreshold = False

        return withinThreshold

    #calculates global and if following anyone group centroids
    def calcCentroid(self):
        self.centroid = [self.mouse.x, self.mouse.y]
        for key, value in self.neighborInfo.items():
            self.centroid[0] += value['x']
            self.centroid[1] += value['y']
        self.centroid[0] = math.floor(self.centroid[0] /
                                      (self.numNeighbors + 1))
        self.centroid[1] = math.floor(self.centroid[1] /
                                      (self.numNeighbors + 1))

    def weightByXY(self, x, y, multiplier):
        if multiplier is 0: return
        xDir = x - self.mouse.x
        yDir = y - self.mouse.y
        distSq = (xDir * xDir) + (yDir * yDir)
        if distSq is 0: return
        xDir /= distSq
        yDir /= distSq
        if xDir < 0:
            self.weights[0] += abs(xDir) * multiplier
        else:
            self.weights[1] += xDir * multiplier
        if yDir > 0:
            self.weights[2] += yDir * multiplier
        else:
            self.weights[3] += abs(yDir) * multiplier

    def weightByCentroid(self, multiplier):
        if multiplier is 0: return
        x = self.centroid[0] - self.mouse.x
        y = self.centroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        if distSq is 0: return
        x /= distSq
        y /= distSq
        if x < 0:
            self.weights[0] += abs(x) * multiplier
        else:
            self.weights[1] += x * multiplier
        if y > 0:
            self.weights[2] += y * multiplier
        else:
            self.weights[3] += abs(y) * multiplier

    def calcGroupCentroid(self):
        if len(self.group) is 0: return
        self.groupCentroid = [self.mouse.x, self.mouse.y]
        for id in self.group:
            self.groupCentroid[0] += self.neighborInfo[id]['x']
            self.groupCentroid[1] += self.neighborInfo[id]['y']
        self.groupCentroid[0] = math.floor(self.groupCentroid[0] /
                                           (len(self.group) + 1))
        self.groupCentroid[1] = math.floor(self.groupCentroid[1] /
                                           (len(self.group) + 1))

    def weightByGroup(self, multiplier):
        if multiplier is 0: return
        x = self.groupCentroid[0] - self.mouse.x
        y = self.groupCentroid[1] - self.mouse.y
        distSq = (x * x) + (y * y)
        if distSq is 0: return
        x /= distSq
        y /= distSq
        if x < 0:
            self.weights[0] += abs(x) * multiplier
        else:
            self.weights[1] += x * multiplier
        if y > 0:
            self.weights[2] += y * multiplier
        else:
            self.weights[3] += abs(y) * multiplier

    #calculates weights based on neighbors distances
    def weightByNeighbor(self, multiplier):
        if multiplier is 0: return
        x = 0
        y = 0
        for key, value in self.neighborInfo.items():
            x = value['x'] - self.mouse.x
            y = value['y'] - self.mouse.y
            #dist squared
            distSq = (x * x) + (y * y)
            if distSq is 0: continue
            x /= distSq
            y /= distSq
            if x < 0:
                self.weights[0] += abs(x) * multiplier
            else:
                self.weights[1] += x * multiplier
            if y > 0:
                self.weights[2] += y * multiplier
            else:
                self.weights[3] += abs(y) * multiplier

    def go(self):

        self.mouse.senseWalls()
        print(self.mouse.getCurrentCell().getWhichIsWall())

        sendData = {
            'id': self.mouse.id,
            'direction': self.mouse.direction,
            'x': self.mouse.x,
            'y': self.mouse.y,
            'up': not self.mouse.canGoUp(),
            'down': not self.mouse.canGoDown(),
            'left': not self.mouse.canGoLeft(),
            'right': not self.mouse.canGoRight()
        }

        self.network.sendStringData(sendData)
        recvData = self.network.retrieveData()
        numPackets = 0
        while recvData:
            otherMap = recvData
            cell = self.mouse.mazeMap.getCell(otherMap['x'], otherMap['y'])
            if self.visited[otherMap['x']][
                    otherMap['y']] is not self.numNeighbors + 1:
                self.visited[otherMap['x']][otherMap['y']] = otherMap['id']
            if otherMap['id'] in self.neighborInfo:
                if otherMap['id'] < self.leader: self.leader = otherMap['id']
                self.neighborInfo[otherMap['id']] = {
                    'x': otherMap['x'],
                    'y': otherMap['y'],
                    'direction': otherMap['direction']
                }
                numPackets += 1
            if otherMap['up']: self.mouse.mazeMap.setCellUpAsWall(cell)
            if otherMap['down']: self.mouse.mazeMap.setCellDownAsWall(cell)
            if otherMap['left']: self.mouse.mazeMap.setCellLeftAsWall(cell)
            if otherMap['right']: self.mouse.mazeMap.setCellRightAsWall(cell)
            recvData = self.network.retrieveData()

        #determine if tracking leader still viable option
        if self.stayPut:
            if self.mouse.x is self.neighborInfo[self.leader]['x'] and \
            self.mouse.y is self.neighborInfo[self.leader]['y']:
                print('staying put')
                return
            else:
                print('cant stay put')
                self.stayPut = False

        #make sure neighbors are still around and initialize weights
        previousWeights = self.weights
        self.weights = [0, 0, 0, 0]
        groupWeight = 0
        centroidWeight = 0  #not used at all currently
        neighborWeight = 0

        groupSize = self.refineGroup(8)

        #calculate weights and centroids
        self.calcCentroid()
        self.calcGroupCentroid()
        #NOTE weight multipliers could be optimized or irradicated
        targetLeader = False
        if groupSize is self.numNeighbors:
            targetLeader = True
            if self.mouse.id is self.leader:
                self.centroid = [self.mouse.x, self.mouse.y]
                print('targeting leader')
                return
            else:
                x = self.neighborInfo[self.leader]['x']
                y = self.neighborInfo[self.leader]['y']
                self.weightByXY(x, y, 1)
                if self.path.count([x, y]): self.backTrack = True
        elif groupSize > 0:
            groupWeight = 1
            neighborWeight = 2
            self.weightByGroup(groupWeight)
            self.weightByNeighbor(neighborWeight)
        else:
            neighborWeight = 1
            self.weightByNeighbor(neighborWeight)

        #determine freedom
        freedom = []
        freedom = self.checkFreedom()

        #determine if pause is good idea
        if len(self.neighborInfo) is self.numNeighbors and \
        (self.isAtCentroid() and len(self.group) is self.numNeighbors):
            return

        #sort weighted directions
        ranks = [('left', self.weights[0]), ('right', self.weights[1]),
                 ('down', self.weights[2]), ('up', self.weights[3])]
        ranks = sorted(ranks, key=itemgetter(1))

        #attempt to move
        moved = False
        for d in range(4):
            if self.backTrack: break
            direction = ranks[3 - d][0]
            if freedom.count(direction) is 0: continue
            if direction is 'left':
                prevVisitor = self.visited[self.mouse.x - 1][self.mouse.y]
                if prevVisitor is self.numNeighbors + 1: continue
                if prevVisitor is not self.mouse.id:
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.visited[self.mouse.x -
                                 1][self.mouse.y] = self.mouse.id
                    self.mouse.goLeft()
                    moved = True
            elif direction is 'up':
                prevVisitor = self.visited[self.mouse.x][self.mouse.y - 1]
                if prevVisitor is self.numNeighbors + 1: continue
                if prevVisitor is not self.mouse.id:
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.visited[self.mouse.x][self.mouse.y -
                                               1] = self.mouse.id
                    self.mouse.goUp()
                    moved = True
            elif direction is 'right':
                prevVisitor = self.visited[self.mouse.x + 1][self.mouse.y]
                if prevVisitor is self.numNeighbors + 1: continue
                if prevVisitor is not self.mouse.id:
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.visited[self.mouse.x +
                                 1][self.mouse.y] = self.mouse.id
                    self.mouse.goRight()
                    moved = True
            elif direction is 'down':
                prevVisitor = self.visited[self.mouse.x][self.mouse.y + 1]
                if prevVisitor is self.numNeighbors + 1: continue
                if prevVisitor is not self.mouse.id:
                    self.path.append([self.mouse.x, self.mouse.y])
                    self.visited[self.mouse.x][self.mouse.y +
                                               1] = self.mouse.id
                    self.mouse.goDown()
                    moved = True
            if moved:
                if prevVisitor is not self.mouse.id and prevVisitor is not -1 and \
                prevVisitor is not self.numNeighbors + 1 and self.group.count(prevVisitor) is 0:
                    self.group.append(prevVisitor)
                break

        #backtrack if necessary, but can only go back 16 spaces
        if not moved and len(self.path) != 0:
            self.backTrack = False
            xp, yp = self.path.pop()
            if self.visited[xp][yp] is self.numNeighbors + 1:
                xp, yp = self.path.pop()
            if xp < self.mouse.x:
                self.mouse.goLeft()
            elif xp > self.mouse.x:
                self.mouse.goRight()
            elif yp < self.mouse.y:
                self.mouse.goUp()
            elif yp > self.mouse.y:
                self.mouse.goDown()
        #keep path length at max
        if len(self.path) > self.maxPathLength: self.path = self.path[1:]

        #check to see if rendezvous at leader complete - will break if one robot leaves
        if len(self.group) is self.numNeighbors and self.calcMaxDistFromCentroid() <= 2 and \
        (targetLeader and self.mouse.x is self.neighborInfo[self.leader]['x'] and
        self.mouse.y is self.neighborInfo[self.leader]['y']):
            print('staying put')
            self.stayPut = True

        sleep(self.timeStep)