コード例 #1
0
def test_extract_plan():
    op1 = Operator("op1", [], ["a"], [])
    op2 = Operator("op2", ["a"], ["b"], [])
    op3 = Operator("op3", ["a", "b"], ["c"], [])
    op4 = Operator("op4", [], ["a", "b"], [])
    expected = [
        (["not-a-0", "a-1"], [op1], [op1]),
        (["not-a-0", "a-1", "b-0", "b-1"], [op1, op2], [op1]),
        (
            ["not-a-0", "a-1", "not-b-0", "not-b-1", "a-2", "b-2"],
            [op1, op2],
            [op1, op2],
        ),
        ([], [op1], []),
        (
            [
                "a-0", "not-b-0", "not-c-0", "a-1", "b-1", "not-c-1", "a-2",
                "b-2", "c-2"
            ],
            [op1, op2, op3],
            [op2, op3],
        ),
        (["not-a-0, not-b-0", "a-1", "b-1"], [op1, op4], [op4]),
    ]

    for valuation, operators, plan in expected:
        extracted_plan = sat._extract_plan(operators, valuation)
        assert extracted_plan == plan
コード例 #2
0
def test_compute_landmark_costs():
    op1 = Operator('op1', set(), {'A', 'C'}, set())
    op2 = Operator('op2', set(), {'B', 'C'}, set())
    op3 = Operator('op3', set(), {'D'}, set())
    task = Task('task1', set(), set(), set(), [op1, op2, op3])
    costs = landmarks.compute_landmark_costs(task, ['A', 'C', 'D'])
    print(costs)
    expected = {'A': 0.5, 'C': 0.5, 'D': 1}
    assert expected == costs
コード例 #3
0
def test_compute_landmark_costs():
    op1 = Operator("op1", set(), {"A", "C"}, set())
    op2 = Operator("op2", set(), {"B", "C"}, set())
    op3 = Operator("op3", set(), {"D"}, set())
    task = Task("task1", set(), set(), set(), [op1, op2, op3])
    costs = landmarks.compute_landmark_costs(task, ["A", "C", "D"])
    print(costs)
    expected = {"A": 0.5, "C": 0.5, "D": 1}
    assert expected == costs
コード例 #4
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_simple_task():
    """
    Task with a goal with two facts and an operator with no effect.
    """
    op1 = Operator("op1", {"var1"}, {"var2"}, set())
    op2 = Operator("op2", {"var1"}, set(), set())
    op3 = Operator("op3", {"var2"}, {"var1"}, set())
    init = frozenset(["var1"])
    goals = frozenset(["var1", "var2"])
    task1 = Task("task1", {"var1", "var2", "var3"}, init, goals, [op1, op2, op3])
    return task1
コード例 #5
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_simple_task_unsolvable():
    """
    Unsolvable task.
    """
    op1 = Operator("op1", {"var1"}, {"var2"}, set())
    op2 = Operator("op2", {"var1"}, set(), set())
    op3 = Operator("op3", {"var2"}, {"var1"}, set())
    init = frozenset(["var1"])
    goals = frozenset(["var1", "var3"])
    task1 = Task("task1", {"var1", "var2", "var3"}, init, goals, [op1, op2, op3])
    return task1
コード例 #6
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_simple_task_at_goal():
    """
    Goal is already reached in the initial state.
    """
    op1 = Operator("op1", {"var1"}, {"var2"}, set())
    op2 = Operator("op2", {"var1"}, set(), set())
    op3 = Operator("op3", {"var2"}, {"var1"}, set())
    init = frozenset(["var1"])
    goals = frozenset(["var1"])
    task1 = Task("task1", {"var1", "var2", "var3"}, init, goals, [op1, op2, op3])
    return task1
コード例 #7
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_simple_task_always_true():
    """
    Simple test task with one operator needed.
    """
    op1 = Operator("op1", {}, {"var2"}, set())
    op2 = Operator("op2", {"var1"}, set(), set())
    op3 = Operator("op3", {"var2"}, {"var1"}, set())
    init = frozenset(["var1"])
    goals = frozenset(["var1", "var2"])
    task1 = Task("task1", {"var1", "var2", "var3"}, init, goals, [op1, op2, op3])
    return task1
コード例 #8
0
def _get_simple_task():
    """
    Task with a goal with two facts and an operator with no effect.
    """
    op1 = Operator('op1', {'var1'}, {'var2'}, set())
    op2 = Operator('op2', {'var1'}, set(), set())
    op3 = Operator('op3', {'var2'}, {'var1'}, set())
    init = frozenset(['var1'])
    goals = frozenset(['var1', 'var2'])
    task1 = Task('task1', {'var1', 'var2', 'var3'}, init, goals,
                [op1, op2, op3])
    return task1
コード例 #9
0
def _get_simple_task_unsolvable():
    """
    Unsolvable task.
    """
    op1 = Operator('op1', {'var1'}, {'var2'}, set())
    op2 = Operator('op2', {'var1'}, set(), set())
    op3 = Operator('op3', {'var2'}, {'var1'}, set())
    init = frozenset(['var1'])
    goals = frozenset(['var1', 'var3'])
    task1 = Task('task1', {'var1', 'var2', 'var3'}, init, goals,
                 [op1, op2, op3])
    return task1
コード例 #10
0
def _get_simple_task_at_goal():
    """
    Goal is already reached in the initial state.
    """
    op1 = Operator('op1', {'var1'}, {'var2'}, set())
    op2 = Operator('op2', {'var1'}, set(), set())
    op3 = Operator('op3', {'var2'}, {'var1'}, set())
    init = frozenset(['var1'])
    goals = frozenset(['var1'])
    task1 = Task('task1', {'var1', 'var2', 'var3'}, init, goals,
                 [op1, op2, op3])
    return task1
コード例 #11
0
def _get_simple_task_always_true():
    """
    Simple test task with one operator needed.
    """
    op1 = Operator('op1', {}, {'var2'}, set())
    op2 = Operator('op2', {'var1'}, set(), set())
    op3 = Operator('op3', {'var2'}, {'var1'}, set())
    init = frozenset(['var1'])
    goals = frozenset(['var1', 'var2'])
    task1 = Task('task1', {'var1', 'var2', 'var3'}, init, goals,
                 [op1, op2, op3])
    return task1
コード例 #12
0
def test_relaxation_heuristic_constructor():
    op1 = Operator("op1", {"A"}, {"B"}, set())
    op2 = Operator("op2", {"B"}, {"C"}, set())

    init = frozenset(["A"])
    goals = frozenset(["C"])
    task = Task("task1", {"A", "B", "C"}, init, goals, [op1, op2])

    rh = hAddHeuristic(task)
    rop1 = RelaxedOperator(op1.name, ["A"], ["B"])

    assert len(rh.operators) == 2
    assert len(rh.facts) == 3
    assert rh.facts["A"].precondition_of[0].name == rop1.name
コード例 #13
0
def test_relaxation_heuristic_constructor():
    op1 = Operator('op1', {'A'}, {'B'}, set())
    op2 = Operator('op2', {'B'}, {'C'}, set())

    init = frozenset(['A'])
    goals = frozenset(['C'])
    task = Task('task1', {'A', 'B', 'C'}, init, goals, [op1, op2])

    rh = hAddHeuristic(task)
    rop1 = RelaxedOperator(op1.name, ['A'], ['B'])

    assert (len(rh.operators) == 2)
    assert (len(rh.facts) == 3)
    assert (rh.facts['A'].precondition_of[0].name == rop1.name)
コード例 #14
0
def _create_operator(action, assignment, statics, init):
    """Create an operator for "action" and "assignment".

    Statics are handled here. True statics aren't added to the
    precondition facts of a grounded operator. If there is a false static
    in the ungrounded precondition, the operator won't be created.
    @param assignment: mapping from predicate name to object name
    """
    precondition_facts = set()
    for precondition in action.precondition:
        fact = _ground_atom(precondition, assignment)
        predicate_name = precondition.name
        if predicate_name in statics:
            # Check if this precondition is false in the initial state
            if fact not in init:
                # This precondition is never true -> Don't add operator
                return None
        else:
            # This precondition is not always true -> Add it
            precondition_facts.add(fact)

    add_effects = _ground_atoms(action.effect.addlist, assignment)
    del_effects = _ground_atoms(action.effect.dellist, assignment)
    # If the same fact is added and deleted by an operator the STRIPS formalism
    # adds it.
    del_effects -= add_effects
    # If a fact is present in the precondition, we do not have to add it.
    # Note that if a fact is in the delete and in the add effects,
    # it has already been deleted in the previous step.
    add_effects -= precondition_facts
    args = [assignment[name] for name, types in action.signature]
    name = _get_grounded_string(action.name, args)
    return Operator(name, precondition_facts, add_effects, del_effects)
コード例 #15
0
def test_extract_plan():
    op1 = Operator('op1', [], ['a'], [])
    op2 = Operator('op2', ['a'], ['b'], [])
    op3 = Operator('op3', ['a', 'b'], ['c'], [])
    op4 = Operator('op4', [], ['a', 'b'], [])
    expected = [(['not-a-0', 'a-1'], [op1], [op1]),
                (['not-a-0', 'a-1', 'b-0', 'b-1'], [op1, op2], [op1]),
                (['not-a-0', 'a-1', 'not-b-0', 'not-b-1', 'a-2',
                  'b-2'], [op1, op2], [op1, op2]), ([], [op1], []),
                ([
                    'a-0', 'not-b-0', 'not-c-0', 'a-1', 'b-1', 'not-c-1',
                    'a-2', 'b-2', 'c-2'
                ], [op1, op2, op3], [op2, op3]),
                (['not-a-0, not-b-0', 'a-1', 'b-1'], [op1, op4], [op4])]

    for valuation, operators, plan in expected:
        extracted_plan = sat._extract_plan(operators, valuation)
        yield assert_equal, extracted_plan, plan
コード例 #16
0
def _create_operator(action, assignment, statics, init):
    """Create an operator for "action" and "assignment".

    Statics are handled here. True statics aren't added to the
    precondition facts of a grounded operator. If there is a false static
    in the ungrounded precondition, the operator won't be created.
    @param assignment: mapping from predicate name to object name
    """
    precondition_facts = set()
    #print('SARAH action:')
    #print(action)
    for precondition in action.precondition:
        #print('SARAH: precondition is ')
        #print(precondition)
        fact = _ground_atom(precondition, assignment)
        #print('fact is:' )
        #print(fact)
        #print(' precondition is rather')
        #print(precondition)
        is_postive = True
        
        if 'False' in precondition.__str__():
            is_postive = False           
        #print('is_positive')
        #print(is_postive)    
        predicate_name = precondition.name
        if predicate_name in statics:
            if is_postive:
                # Check if this precondition is false in the initial state
                if fact not in init:
                    # This precondition is never true -> Don't add operator
                    return None
            # if the precondition is a negative one - we verify it does not exists in the initial state 
            else:
                # Check if this precondition is in the initial state
                if fact in init:
                    # This precondition is never true -> Don't add operator
                    return None
                
        else:
            # This precondition is not always true -> Add it
            precondition_facts.add(fact+'='+str(is_postive))

    add_effects = _ground_atoms(action.effect.addlist, assignment)
    del_effects = _ground_atoms(action.effect.dellist, assignment)
    # If the same fact is added and deleted by an operator the STRIPS formalism
    # adds it.
    del_effects -= add_effects
    # If a fact is present in the precondition, we do not have to add it.
    # Note that if a fact is in the delete and in the add effects,
    # it has already been deleted in the previous step.
    add_effects -= precondition_facts
    args = [assignment[name] for name, types in action.signature]
    name = _get_grounded_string(action.name, args)
    
    return Operator(name, precondition_facts, add_effects, del_effects)
コード例 #17
0
def _get_intermediate_task2():
    """
    Intermediate task
    """
    op1 = Operator('op1', {'v1'}, {'v2'}, set())
    op2 = Operator('op2', {'v2'}, {'v3'}, set())
    op3 = Operator('op3', {'v3'}, {'v4', 'v5'}, set())
    op4 = Operator('op4', {'v7', 'v5'}, {'g'}, set())
    op7 = Operator('op7', {'v4'}, {'v7'}, set())
    op5 = Operator('op5', {'v2'}, {'v6'}, set())
    op6 = Operator('op6', {'v6'}, {'v5'}, set())
    init = frozenset(['v1'])
    goals = frozenset(['g'])
    task1 = Task('task1', {'v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7', 'g'},
                 init, goals, [op1, op2, op3, op4, op5, op6, op7])
    return task1
コード例 #18
0
ファイル: mme.py プロジェクト: guilhembn/pyperplan
def mme_search(search, heuristic, explained_plan, m_r: Task, m_h: Task):
    eps_mme = []
    fringe = PrioQueue(search, heuristic, explained_plan)
    c_list = []
    h_list = []
    fringe.push((m_r, []), 0)
    m_hat = m_h
    while len(fringe) != 0:
        x, c = fringe.pop(m_hat)
        m_hat, eps = x
        m_hat_optimal = search_plan(m_hat, search, heuristic)
        if m_hat_optimal is None or not is_plan_applicable(
                explained_plan,
                m_hat) or len(explained_plan) > len(m_hat_optimal):
            h_list.append(m_hat.get_gamma() ^ m_r.get_gamma())
        else:
            c_list.append(m_hat.get_gamma())
            for f in m_hat.get_gamma() - m_h.get_gamma():
                lamb = Operator("del-{}".format(f), m_hat.get_gamma(), {}, {f})
                new_gamma = lamb.apply(m_hat.get_gamma())
                if new_gamma not in c_list:
                    sym_diff = m_hat.get_gamma() ^ m_r.get_gamma()
                    prop3_violated = False
                    for s in subsets(sym_diff):
                        if s in h_list:
                            prop3_violated = True
                            break
                    if not prop3_violated:
                        fringe.push((Task.from_gamma(new_gamma), eps + [lamb]),
                                    c + 1)
                        if len(eps) > len(eps_mme):
                            eps_mme = eps

            for f in m_h.get_gamma() - m_hat.get_gamma():
                lamb = Operator("add-{}".format(f), m_hat.get_gamma(), {f}, {})
                new_gamma = lamb.apply(m_hat.get_gamma())
                if new_gamma not in c_list:
                    sym_diff = m_hat.get_gamma() ^ m_r.get_gamma()
                    prop3_violated = False
                    for s in subsets(sym_diff):
                        if s in h_list:
                            prop3_violated = True
                            break
                    if not prop3_violated:
                        fringe.push((Task.from_gamma(new_gamma), eps + [lamb]),
                                    c + 1)
                        if len(eps) > len(eps_mme):
                            eps_mme = eps

    print(m_hat.get_gamma() ^ m_r.get_gamma())
    return explained_plan, eps_mme
コード例 #19
0
def _get_intermediate_task():
    """
    Intermediate test task with four operators needed.
    """
    op1 = Operator('op1', {'v1'}, {'v2'}, set())
    op2 = Operator('op2', {'v2'}, {'v3'}, set())
    op3 = Operator('op3', {'v3'}, {'v4', 'v5'}, set())
    op4 = Operator('op4', {'v4', 'v5'}, {'g'}, set())
    op5 = Operator('op5', {'v2'}, {'v6'}, set())
    op6 = Operator('op6', {'v6'}, {'v5'}, set())
    init = frozenset(['v1'])
    goals = frozenset(['g'])
    task1 = Task('task1', {'v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'g'}, init,
                 goals, [op1, op2, op3, op4, op5, op6])
    return task1
コード例 #20
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_intermediate_task2():
    """
    Intermediate task
    """
    op1 = Operator("op1", {"v1"}, {"v2"}, set())
    op2 = Operator("op2", {"v2"}, {"v3"}, set())
    op3 = Operator("op3", {"v3"}, {"v4", "v5"}, set())
    op4 = Operator("op4", {"v7", "v5"}, {"g"}, set())
    op7 = Operator("op7", {"v4"}, {"v7"}, set())
    op5 = Operator("op5", {"v2"}, {"v6"}, set())
    op6 = Operator("op6", {"v6"}, {"v5"}, set())
    init = frozenset(["v1"])
    goals = frozenset(["g"])
    task1 = Task(
        "task1",
        {"v1", "v2", "v3", "v4", "v5", "v6", "v7", "g"},
        init,
        goals,
        [op1, op2, op3, op4, op5, op6, op7],
    )
    return task1
コード例 #21
0
ファイル: mce.py プロジェクト: guilhembn/pyperplan
def mce_search(search, heuristic, explained_plan, m_r: Task, m_h: Task):
    c_list = []  # Closed list
    p_r = explained_plan
    fringe = PrioQueue(search, heuristic, explained_plan)
    fringe.push((m_h, []), 0)
    m_hat = m_h
    i = 0
    print(m_r)
    while True:
        print(i)
        i += 1
        print("Popping")
        x, c = fringe.pop(m_hat)
        m_hat, eps = x
        print("Checking plan optimality")
        p_h = search_plan(m_hat, search, heuristic)
        if is_plan_optimal(p_r, m_hat, p_h):
            return p_r, eps
        else:
            c_list.append(m_hat.get_gamma())
            for f in m_hat.get_gamma() - m_r.get_gamma():
                print("Fact to be removed:", f)
                lamb = Operator("del-{}".format(f), m_hat.get_gamma(), {}, {f})
                new_gamma = lamb.apply(m_hat.get_gamma())
                if new_gamma not in c_list:
                    fringe.push((Task.from_gamma(new_gamma), eps + [lamb]),
                                c + 1)
                else:
                    print("In c_list !")

            print("Robot gamma:", m_r.get_gamma(), "\nExplored gamma: ",
                  m_hat.get_gamma(), "\nG(Mr) \\ G(Mh):",
                  m_r.get_gamma() - m_hat.get_gamma())
            for f in m_r.get_gamma() - m_hat.get_gamma():
                print("fact to be added: ", f)
                lamb = Operator("add-{}".format(f), m_hat.get_gamma(), {f}, {})
                new_gamma = lamb.apply(m_hat.get_gamma())
                if new_gamma not in c_list:
                    fringe.push((Task.from_gamma(new_gamma), eps + [lamb]),
                                c + 1)
                    #print(Task.from_gamma(new_gamma))
                else:
                    print("In c_list !")
コード例 #22
0
ファイル: test_lm_cut.py プロジェクト: AAIR-lab/GHN
def _get_intermediate_task():
    """
    Intermediate test task with four operators needed.
    """
    op1 = Operator("op1", {"v1"}, {"v2"}, set())
    op2 = Operator("op2", {"v2"}, {"v3"}, set())
    op3 = Operator("op3", {"v3"}, {"v4", "v5"}, set())
    op4 = Operator("op4", {"v4", "v5"}, {"g"}, set())
    op5 = Operator("op5", {"v2"}, {"v6"}, set())
    op6 = Operator("op6", {"v6"}, {"v5"}, set())
    init = frozenset(["v1"])
    goals = frozenset(["g"])
    task1 = Task(
        "task1",
        {"v1", "v2", "v3", "v4", "v5", "v6", "g"},
        init,
        goals,
        [op1, op2, op3, op4, op5, op6],
    )
    return task1
コード例 #23
0
def test_heuristics():
    # simple task: two operators have to be applied
    task1 = Task(
        "task1",
        {"A", "B", "C"},
        frozenset({"A"}),
        frozenset({"C", "B"}),
        [
            Operator("op1", {"A"}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set()),
            Operator("op3", {"B"}, {"A"}, set()),
        ],
    )

    # initial state is part of the goal state: one operator has to be applied
    task2 = Task(
        "task2",
        {"A", "B", "C"},
        frozenset(["A", "B"]),
        frozenset(["B", "C"]),
        [
            Operator("op1", {"A"}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set())
        ],
    )

    # task with one operator with two preconditions
    task3 = Task(
        "task3",
        {"A", "B", "C"},
        frozenset(["A", "B"]),
        frozenset(["C"]),
        [Operator("op1", {"A", "B"}, {"C"}, set())],
    )

    # task with one operator with two effects
    task4 = Task(
        "task4",
        {"A", "B", "C"},
        frozenset(["A"]),
        frozenset(["C", "B"]),
        [Operator("op1", {"A"}, {"B", "C"}, set())],
    )

    # task with one operator with equal precondition and effect,
    task4b = Task(
        "task4b",
        {"A", "B", "C"},
        frozenset(["A"]),
        frozenset(["C", "B"]),
        [Operator("op1", {"A"}, {"A", "B", "C"}, set())],
    )

    # task with one operator with several effects,
    # 2 operators have to be applied
    task5 = Task(
        "task5",
        {"A", "B", "C", "D", "E", "F"},
        ["A"],
        ["E", "F"],
        [
            Operator("op1", {"A"}, {"B", "C", "D", "E"}, set()),
            Operator("op2", {"C"}, {"F"}, set()),
        ],
    )

    # task with one operator with several preconditions
    task6 = Task(
        "task6",
        {"A", "B", "C", "D", "E"},
        ["A"],
        ["E"],
        [
            Operator("op1", {"A"}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set()),
            Operator("op3", {"A"}, {"D"}, set()),
            Operator("op4", {"A", "C", "B", "D"}, {"E"}, set()),
        ],
    )

    # task with empty initial state: no operator can be applied
    task7 = Task(
        "task7",
        {"A", "B", "C"},
        [],
        ["C"],
        [
            Operator("op1", {"A"}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set())
        ],
    )

    # task with initial state = goal state: no operator has to be applied
    task8 = Task(
        "task8",
        {"A", "B", "C"},
        ["C"],
        ["C"],
        [
            Operator("op1", {"A"}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set())
        ],
    )

    # task with operator with empty precondition
    task9 = Task(
        "task9",
        {"A", "B", "C"},
        [],
        ["C"],
        [
            Operator("op1", {}, {"B"}, set()),
            Operator("op2", {"B"}, {"C"}, set())
        ],
    )

    # a more complex task
    task10 = Task(
        "task10",
        {"v1", "v2", "v3", "v4", "v5", "v6", "g"},
        ["v1"],
        ["g"],
        [
            Operator("op1", {"v1"}, {"v2"}, set()),
            Operator("op2", {"v2"}, {"v3"}, set()),
            Operator("op3", {"v3"}, {"v4", "v5"}, set()),
            Operator("op4", {"v4", "v5"}, {"g"}, set()),
            Operator("op5", {"v2"}, {"v6"}, set()),
            Operator("op6", {"v6"}, {"v5"}, set()),
        ],
    )

    # another complex task
    task12 = Task(
        "task12",
        {"A", "B", "C", "D", "E", "F", "G", "H", "I"},
        ["A", "B"],
        ["F", "G", "H"],
        [
            Operator("op1", {"A"}, {"C"}, set()),
            Operator("op2", {"C", "D"}, {"F"}, set()),
            Operator("op3", {"D", "E"}, {"G", "H"}, set()),
            Operator("op4", {"B"}, {"D", "E"}, set()),
            Operator("op5", {"I"}, {"H"}, set()),
        ],
    )

    # task with no goal:
    task13 = Task(
        "task13",
        {"A", "B", "C"},
        ["A", "B"],
        [],
        [Operator("op1", {"A", "B"}, {"C"}, set())],
    )
    # task with no reachable goal:
    task14 = Task(
        "task14",
        {"A", "B", "C"},
        ["A"],
        ["B", "C"],
        [Operator("op1", {"A"}, {"B"}, set())],
    )

    # columns:           landmarks      lm_costs                h
    expected = [
        (task1, {"B", "C"}, {
            "B": 1,
            "C": 1
        }, 2),
        (task2, {"B", "C"}, {
            "B": 1,
            "C": 1
        }, 1),
        (task3, {"C"}, {
            "C": 1
        }, 1),
        (task4, {"B", "C"}, {
            "B": 0.5,
            "C": 0.5
        }, 1),
    ]

    for task, expected_landmarks, expected_lmc, exptected_h in expected:
        assert landmarks.get_landmarks(task) == expected_landmarks
        assert (landmarks.compute_landmark_costs(
            task, expected_landmarks) == expected_lmc)
        assert (landmarks.LandmarkHeuristic(task)(make_root_node(
            task.initial_state)) == exptected_h)
コード例 #24
0
"""
Tests for the task.py module
"""
import py

from task import Task, Operator

s1 = frozenset(['var1'])
s2 = frozenset(['var2'])
s3 = frozenset(['var1', 'var2'])
op1 = Operator('op1', {'var1'}, {'var2'}, set())
op2 = Operator('op1', {'var1'}, set(), set())
op3 = Operator('op1', {'var2'}, {'var1'}, set())

# Operator that makes var2 true and false
op4 = Operator('op1', {'var1'}, {'var2'}, {'var2'})

init = frozenset(['var1'])
goals = frozenset(['var1', 'var2'])
task1 = Task('task1', {'var1', 'var2', 'var3'}, init, goals, [op1, op2, op3])


def test_op_applicable1():
    assert op1.applicable(s1)


def test_op_applicable2():
    assert not op1.applicable(s2)


def test_op_applicable3():
コード例 #25
0
def test_relaxed_task():
    op1 = Operator('op1', {'A'}, {'A', 'C'}, {'B', 'C'})
    task = Task('task1', set(), set(), set(), [op1])
    relaxed_task = landmarks._get_relaxed_task(task)
    assert len(relaxed_task.operators[0].del_effects) == 0
コード例 #26
0
def test_landmarks1():
    op1 = Operator('op1', set(), {'A'}, set())
    op2 = Operator('op2', {'A'}, {'B'}, set())
    task = Task('task1', {'A', 'B'}, set(), {'B'}, [op1, op2])
    assert landmarks.get_landmarks(task) == {'A', 'B'}
コード例 #27
0
def test_heuristics():
    # simple task: two operators have to be applied
    task1 = Task('task1', {'A', 'B', 'C'}, frozenset({'A'}),
                 frozenset({'C', 'B'}), [
                     Operator('op1', {'A'}, {'B'}, set()),
                     Operator('op2', {'B'}, {'C'}, set()),
                     Operator('op3', {'B'}, {'A'}, set())
                 ])

    # initial state is part of the goal state: one operator has to be applied
    task2 = Task('task2', {'A', 'B', 'C'}, frozenset(['A', 'B']),
                 frozenset(['B', 'C']), [
                     Operator('op1', {'A'}, {'B'}, set()),
                     Operator('op2', {'B'}, {'C'}, set())
                 ])

    # task with one operator with two preconditions
    task3 = Task('task3', {'A', 'B', 'C'}, frozenset(['A', 'B']),
                 frozenset(['C']), [Operator('op1', {'A', 'B'}, {'C'}, set())])

    # task with one operator with two effects
    task4 = Task('task4', {'A', 'B', 'C'}, frozenset(['A']),
                 frozenset(['C', 'B']),
                 [Operator('op1', {'A'}, {'B', 'C'}, set())])

    # task with one operator with equal precondition and effect,
    task4b = Task('task4b', {'A', 'B', 'C'}, frozenset(['A']),
                  frozenset(['C', 'B']),
                  [Operator('op1', {'A'}, {'A', 'B', 'C'}, set())])

    # task with one operator with several effects,
    # 2 operators have to be applied
    task5 = Task('task5', {'A', 'B', 'C', 'D', 'E', 'F'}, ['A'], ['E', 'F'], [
        Operator('op1', {'A'}, {'B', 'C', 'D', 'E'}, set()),
        Operator('op2', {'C'}, {'F'}, set())
    ])

    # task with one operator with several preconditions
    task6 = Task('task6', {'A', 'B', 'C', 'D', 'E'}, ['A'], ['E'], [
        Operator('op1', {'A'}, {'B'}, set()),
        Operator('op2', {'B'}, {'C'}, set()),
        Operator('op3', {'A'}, {'D'}, set()),
        Operator('op4', {'A', 'C', 'B', 'D'}, {'E'}, set())
    ])

    # task with empty initial state: no operator can be applied
    task7 = Task('task7', {'A', 'B', 'C'}, [], ['C'], [
        Operator('op1', {'A'}, {'B'}, set()),
        Operator('op2', {'B'}, {'C'}, set())
    ])

    # task with initial state = goal state: no operator has to be applied
    task8 = Task('task8', {'A', 'B', 'C'}, ['C'], ['C'], [
        Operator('op1', {'A'}, {'B'}, set()),
        Operator('op2', {'B'}, {'C'}, set())
    ])

    # task with operator with empty precondition
    task9 = Task('task9', {'A', 'B', 'C'}, [], ['C'], [
        Operator('op1', {}, {'B'}, set()),
        Operator('op2', {'B'}, {'C'}, set())
    ])

    # a more complex task
    task10 = Task('task10', {'v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'g'}, ['v1'],
                  ['g'], [
                      Operator('op1', {'v1'}, {'v2'}, set()),
                      Operator('op2', {'v2'}, {'v3'}, set()),
                      Operator('op3', {'v3'}, {'v4', 'v5'}, set()),
                      Operator('op4', {'v4', 'v5'}, {'g'}, set()),
                      Operator('op5', {'v2'}, {'v6'}, set()),
                      Operator('op6', {'v6'}, {'v5'}, set())
                  ])

    # another complex task
    task12 = Task('task12', {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'},
                  ['A', 'B'], ['F', 'G', 'H'], [
                      Operator('op1', {'A'}, {'C'}, set()),
                      Operator('op2', {'C', 'D'}, {'F'}, set()),
                      Operator('op3', {'D', 'E'}, {'G', 'H'}, set()),
                      Operator('op4', {'B'}, {'D', 'E'}, set()),
                      Operator('op5', {'I'}, {'H'}, set())
                  ])

    # task with no goal:
    task13 = Task('task13', {'A', 'B', 'C'}, ['A', 'B'], [],
                  [Operator('op1', {'A', 'B'}, {'C'}, set())])
    # task with no reachable goal:
    task14 = Task('task14', {'A', 'B', 'C'}, ['A'], ['B', 'C'],
                  [Operator('op1', {'A'}, {'B'}, set())])

    # columns:           landmarks      lm_costs                h
    expected = [
        (task1, {'B', 'C'}, {
            'B': 1,
            'C': 1
        }, 2),
        (task2, {'B', 'C'}, {
            'B': 1,
            'C': 1
        }, 1),
        (task3, {'C'}, {
            'C': 1
        }, 1),
        (task4, {'B', 'C'}, {
            'B': 0.5,
            'C': 0.5
        }, 1),
    ]

    for task, expected_landmarks, expected_lmc, exptected_h in expected:
        assert landmarks.get_landmarks(task) == expected_landmarks
        assert landmarks.compute_landmark_costs(
            task, expected_landmarks) == expected_lmc
        assert landmarks.LandmarkHeuristic(task)(make_root_node(
            task.initial_state)) == exptected_h
コード例 #28
0
def test_collect_facts():
    op1 = Operator("op1", {"var1"}, {}, {"var3"})
    op2 = Operator("op2", {"var2"}, {"var3"}, {})
    op3 = Operator("op3", {}, {"var1"}, {"var4"})
    assert {"var1", "var2", "var3",
            "var4"} == grounding._collect_facts([op1, op2, op3])
コード例 #29
0
def test_sat_solve():
    op1 = Operator('op1', set(), {'a'}, set())
    op2 = Operator('op2', set('a'), set('b'), set())
    op3 = Operator('op3', set(), {'a', 'b', 'c'}, set())
    op4 = Operator('op4', {'b'}, {'c'}, set())
    op5 = Operator('op5', {'b', 'c'}, {'d'}, set())
    op6 = Operator('op6', {'d'}, {'e', 'f'}, set())
    op7 = Operator('op7', {'a', 'c', 'f'}, {'g'}, set())

    task0 = Task('task0', {'a'}, {'a'}, {'a'}, [op1, op2])
    task1 = Task('task1', {'a'}, set(), {'a'}, [op1, op2])
    task2 = Task('task2', {'a', 'b'}, set(), {'b'}, [op1, op2])
    task3 = Task('task3', {'a', 'b', 'c'}, set(), {'c'}, [op1, op2])
    task4 = Task('task4', {'a', 'b', 'c'}, set(), {'c'}, [op1, op2, op3])
    task5 = Task('task5', {'a', 'b', 'c'}, set(), {'c'}, [op1, op2, op4])
    task6 = Task('task6', {'a', 'b', 'c', 'd'}, {'a'}, {'d'}, [op2, op4, op5])
    task7 = Task('task7c', {'a', 'b', 'c', 'd'}, {'a'}, {'d'}, [op3, op5])
    task8 = Task('task8', {'a', 'b', 'c', 'd', 'e', 'f', 'g'}, {'a'}, {'g'},
                 [op2, op3, op4, op5, op6, op7])

    op_a = Operator('op_a', set(), {'a'}, set())
    op_b = Operator('op_b', {'a'}, {'b'}, set())
    op_c = Operator('op_c', {'b'}, {'c'}, set())
    op_d = Operator('op_d', {'c'}, {'d'}, set())
    op_e = Operator('op_e', {'d'}, {'e'}, set())
    op_f = Operator('op_f', {'e'}, {'f'}, set())

    task_d = Task('task_a', {'a', 'b', 'c', 'd'}, set(), {'d'},
                  [op_a, op_b, op_c, op_d])
    task_e = Task('task_b', {'a', 'b', 'c', 'd', 'e'}, set(), {'e'},
                  [op_a, op_b, op_c, op_d, op_f])

    op_facts = Operator(
        'op_facts', set(), {
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
            'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w'
        }, set())

    task_facts = Task(
        'task_facts', {
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
            'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w'
        }, set(), {'v', 'w'}, [op_facts])

    op_delete_pre = Operator('delete_pre', {'a'}, {'b'}, {'a'})
    task_op_delete_pre = Task('op_delete_pre', {'a', 'b'}, {'a'}, {'b'},
                              [op_delete_pre])

    # Miconic: prob00.pddl (2 floors, 1 person):
    # <Op (depart f1 p0), PRE: frozenset({'(lift-at f1)', '(boarded p0)'}),
    #   ADD: frozenset({'(served p0)'}), DEL: frozenset({'(boarded p0)'})>,
    # <Op (board f0 p0), PRE: frozenset({'(lift-at f0)'}),
    #   ADD: frozenset({'(boarded p0)'}), DEL: frozenset()>,
    # <Op (up f0 f1), PRE: frozenset({'(lift-at f0)'}),
    #   ADD: frozenset({'(lift-at f1)'}), DEL: frozenset({'(lift-at f0)'})>]
    op_depart = Operator('depart', {'high', 'boarded'}, {'served'},
                         {'boarded'})
    op_board = Operator('board', {'low'}, {'boarded'}, set())
    op_up = Operator('up', {'low'}, {'high'}, {'low'})
    task_simple_miconic = Task('miconic-simple',
                               {'low', 'high', 'boarded', 'served'}, {'low'},
                               {'served'}, [op_depart, op_board, op_up])

    expected = [(task0, []), (task1, [op1]),
                (task2, [op1, op2]), (task3, None), (task4, [op3]),
                (task5, [op1, op2, op4]), (task6, [op2, op4, op5]),
                (task7, [op3, op5]), (task_facts, [op_facts]),
                (task_op_delete_pre, [op_delete_pre]),
                (task_simple_miconic, [op_board, op_up, op_depart])]

    for task, plan in expected:
        yield check_plan, task, plan
コード例 #30
0
import logging
import sys
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s %(levelname)-8s %(message)s',
                    stream=sys.stdout)

import py.test

from search import sat
from search import minisat
from task import Operator, Task
import tools

fact1 = "at-station"

op1 = Operator('op1', set(), {'a'}, set())
op2 = Operator('op2', set(), set(), {'c'})
op3 = Operator('op3', ['d'], ['a'], [])
op4 = Operator('op4', [], ['b'], [])

task1 = Task('task1', {'a'}, set(), {'a'}, [op1])
task2 = Task('task2', {'a', 'd'}, {'d'}, {'a'}, [op1, op3])
task3 = Task('task3', {'a', 'b'}, set(), {'a', 'b'}, [op1, op4])
task4 = Task('task4', {'a', 'd'}, {'d'}, {'a'}, [op3])
task5 = Task('trivial', {'a'}, {'a'}, {'a'}, [])

aux_a_iff_b = [['a<->b', 'a', 'b'], ['a<->b', 'not-a', 'not-b'],
               ['not-a<->b', 'a', 'not-b'], ['not-a<->b', 'not-a', 'b']]

aux_a_and_b = [['not-aANDb', 'a'], ['not-aANDb', 'b'],
               ['not-a', 'not-b', 'aANDb']]