def predictions_to_annotations(project, queryset, **kwargs): request = kwargs['request'] user = request.user model_version = request.data.get('model_version') queryset = queryset.filter(predictions__isnull=False) predictions = Prediction.objects.filter(task__in=queryset, child_annotations__isnull=True) # model version filter if model_version is not None: predictions = predictions.filter(model_version=model_version) predictions_values = list(predictions.values_list( 'result', 'model_version', 'task_id', 'id' )) # prepare annotations annotations = [] for result, model_version, task_id, prediction_id in predictions_values: annotations.append({ 'result': result, 'completed_by': user.pk, 'task': task_id, 'parent_prediction': prediction_id }) count = len(annotations) logger.debug(f'{count} predictions will be converter to annotations') annotation_ser = AnnotationSerializer(data=annotations, many=True) annotation_ser.is_valid(raise_exception=True) annotation_ser.save() return {'response_code': 200, 'detail': f'Created {count} annotations'}
def post(self, request, *args, **kwargs): # get the cancelled task task = get_object_with_permissions(self.request, Task, self.kwargs['pk'], 'tasks.change_task') # validate data from annotation annotation = AnnotationSerializer(data=request.data) annotation.is_valid(raise_exception=True) # set annotator last activity user = request.user user.activity_at = timezone.now() user.save() # serialize annotation, update task and save com = annotation.save(completed_by=user, was_cancelled=True, task=task) task.annotations.add(com) task.save() return Response(annotation.data, status=status.HTTP_200_OK)
def _scan_and_create_links(self, link_class): tasks_created = 0 maximum_annotations = self.project.maximum_annotations task = self.project.tasks.order_by('-inner_id').first() max_inner_id = (task.inner_id + 1) if task else 1 for key in self.iterkeys(): logger.debug(f'Scanning key {key}') # skip if task already exists if link_class.exists(key, self): logger.debug( f'{self.__class__.__name__} link {key} already exists') continue logger.debug(f'{self}: found new key {key}') try: data = self.get_data(key) except (UnicodeDecodeError, json.decoder.JSONDecodeError) as exc: logger.error(exc, exc_info=True) raise ValueError( f'Error loading JSON from file "{key}".\nIf you\'re trying to import non-JSON data ' f'(images, audio, text, etc.), edit storage settings and enable ' f'"Treat every bucket object as a source file"') # predictions predictions = data.get('predictions', []) if predictions: if 'data' not in data: raise ValueError( 'If you use "predictions" field in the task, ' 'you must put "data" field in the task too') # annotations annotations = data.get('annotations', []) if annotations: if 'data' not in data: raise ValueError( 'If you use "annotations" field in the task, ' 'you must put "data" field in the task too') if 'data' in data and isinstance(data['data'], dict): data = data['data'] with transaction.atomic(): task = Task.objects.create( data=data, project=self.project, overlap=maximum_annotations, is_labeled=len(annotations) >= maximum_annotations, inner_id=max_inner_id) max_inner_id += 1 link_class.create(task, key, self) logger.debug( f'Create {self.__class__.__name__} link with key={key} for task={task}' ) tasks_created += 1 # add predictions logger.debug( f'Create {len(predictions)} predictions for task={task}') for prediction in predictions: prediction['task'] = task.id prediction_ser = PredictionSerializer(data=predictions, many=True) prediction_ser.is_valid(raise_exception=True) prediction_ser.save() # add annotations logger.debug( f'Create {len(annotations)} annotations for task={task}') for annotation in annotations: annotation['task'] = task.id annotation_ser = AnnotationSerializer(data=annotations, many=True) annotation_ser.is_valid(raise_exception=True) annotation_ser.save() self.last_sync = timezone.now() self.last_sync_count = tasks_created self.save() self.project.update_tasks_states( maximum_annotations_changed=False, overlap_cohort_percentage_changed=False, tasks_number_changed=True)