def desicion_tree(k, lenData, pctTest, params, threshold): clear_csv() samples = [] if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.separate_data_2(samples, quantity_for_testing) decisionTree = DecisionTree(threshold) firstRound = cross_validation(k, decisionTree, data, lenData, "trainingFeaturesFirst", "testingFeaturesFirst", "First") secondRound = cross_validation(k, decisionTree, data, lenData, "trainingFeaturesSecond", "testingFeaturesSecond", "Second") secondWithFirst = cross_validation(k, decisionTree, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second") normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("DT", predictions) make_csv(k, normalData, lenData, pctTest, predictions)
def kd_tree_classification(k, lenData, pctTest, params, neightboards): clear_csv() samples = [] if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.prepare_data(samples, quantity_for_testing) kdTree = Kd_Tree(neightboards) firstRound = cross_validation(k, kdTree, data, lenData, "trainingFeatures", "testingFeatures", "First") secondRound = cross_validation(k, kdTree, data, lenData, "trainingFeatures", "testingFeatures", "Second") secondWithFirst = cross_validation(k, kdTree, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second") normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("KD-TREE", predictions) make_csv(k, normalData, lenData, pctTest, predictions)
def svm_classification( k, lenData, pctTest, params, C=1, gamma=1, kernel="rbf"): clear_csv() samples = [] print(params) if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.prepare_data(samples, quantity_for_testing) svmClassifier = SVMClassifier(kernel, C, gamma) firstRound = cross_validation( k, svmClassifier, data, lenData, "trainingFeatures", "testingFeatures", "First" ) secondRound = cross_validation( k, svmClassifier, data, lenData, "trainingFeatures", "testingFeatures", "Second" ) secondWithFirst = cross_validation( k, svmClassifier, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second" ) normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("SVM", predictions) make_csv(k, normalData, lenData, pctTest, predictions)
def kd_tree_classification(k, lenData, pctTest, params, neightboards): clear_csv() samples = [] if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.prepare_data(samples, quantity_for_testing) kdTree = Kd_Tree(neightboards) firstRound = cross_validation( k, kdTree, data, lenData, "trainingFeatures", "testingFeatures", "First" ) secondRound = cross_validation( k, kdTree, data, lenData, "trainingFeatures", "testingFeatures", "Second" ) secondWithFirst = cross_validation( k, kdTree, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second" ) normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("KD-TREE", predictions) make_csv(k, normalData, lenData, pctTest, predictions)
def desicion_tree(k, lenData, pctTest, params, threshold): clear_csv() samples = [] if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.separate_data_2(samples, quantity_for_testing) decisionTree = DecisionTree(threshold) firstRound = cross_validation( k, decisionTree, data, lenData, "trainingFeaturesFirst", "testingFeaturesFirst", "First" ) secondRound = cross_validation( k, decisionTree, data, lenData, "trainingFeaturesSecond", "testingFeaturesSecond", "Second" ) secondWithFirst = cross_validation( k, decisionTree, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second" ) normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("DT", predictions) make_csv(k, normalData, lenData, pctTest, predictions)
def svm_classification(k, lenData, pctTest, params, C=1, gamma=1, kernel="rbf"): clear_csv() samples = [] print(params) if (params[0] == "PAIS"): samples = generar_muestra_pais(lenData) else: samples = generar_muestra_provincia(lenData, params[1]) quantity_for_testing = int(lenData * pctTest) normalizer = Normalizer() data = normalizer.prepare_data(samples, quantity_for_testing) svmClassifier = SVMClassifier(kernel, C, gamma) firstRound = cross_validation(k, svmClassifier, data, lenData, "trainingFeatures", "testingFeatures", "First") secondRound = cross_validation(k, svmClassifier, data, lenData, "trainingFeatures", "testingFeatures", "Second") secondWithFirst = cross_validation(k, svmClassifier, data, lenData, "trainingFeaturesFirstInclude", "testingFeaturesFirstInclude", "Second") normalData = normalizer.get_normal_data() predictions = [firstRound, secondRound, secondWithFirst] show_accuracy("SVM", predictions) make_csv(k, normalData, lenData, pctTest, predictions)