コード例 #1
0
ファイル: test_utils.py プロジェクト: rsetton/tedana
def test_smoke_get_spectrum():
    """
    ensure that get_spectrum returns reasonable objects with random inputs
    in the correct format
    """
    data = np.random.random((100))
    tr = random.random()

    spectrum, freqs = utils.get_spectrum(data, tr)
    assert spectrum is not None
    assert freqs is not None
コード例 #2
0
def comp_figures(ts, mask, comptable, mmix, io_generator, png_cmap):
    """
    Creates static figures that highlight certain aspects of tedana processing
    This includes a figure for each component showing the component time course,
    the spatial weight map and a fast Fourier transform of the time course

    Parameters
    ----------
    ts : (S x T) array_like
        Time series from which to derive ICA betas
    mask : (S,) array_like
        Boolean mask array
    comptable : (C x X) :obj:`pandas.DataFrame`
        Component metric table. One row for each component, with a column for
        each metric. The index should be the component number.
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    io_generator : :obj:`tedana.io.OutputGenerator`
        Output Generator object to use for this workflow
    """
    # Get the lenght of the timeseries
    n_vols = len(mmix)

    # Flip signs of mixing matrix as needed
    mmix = mmix * comptable["optimal sign"].values

    # regenerate the beta images
    ts_B = stats.get_coeffs(ts, mmix, mask)
    ts_B = ts_B.reshape(io_generator.reference_img.shape[:3] + ts_B.shape[1:])
    # trim edges from ts_B array
    ts_B = _trim_edge_zeros(ts_B)

    # Mask out remaining zeros
    ts_B = np.ma.masked_where(ts_B == 0, ts_B)

    # Get repetition time from reference image
    tr = io_generator.reference_img.header.get_zooms()[-1]

    # Create indices for 6 cuts, based on dimensions
    cuts = [ts_B.shape[dim] // 6 for dim in range(3)]
    expl_text = ""

    # Remove trailing ';' from rationale column
    comptable["rationale"] = comptable["rationale"].str.rstrip(";")
    for compnum in comptable.index.values:
        if comptable.loc[compnum, "classification"] == "accepted":
            line_color = "g"
            expl_text = "accepted"
        elif comptable.loc[compnum, "classification"] == "rejected":
            line_color = "r"
            expl_text = "rejection reason(s): " + comptable.loc[compnum,
                                                                "rationale"]
        elif comptable.loc[compnum, "classification"] == "ignored":
            line_color = "k"
            expl_text = "ignored reason(s): " + comptable.loc[compnum,
                                                              "rationale"]
        else:
            # Classification not added
            # If new, this will keep code running
            line_color = "0.75"
            expl_text = "other classification"

        allplot = plt.figure(figsize=(10, 9))
        ax_ts = plt.subplot2grid((5, 6), (0, 0),
                                 rowspan=1,
                                 colspan=6,
                                 fig=allplot)

        ax_ts.set_xlabel("TRs")
        ax_ts.set_xlim(0, n_vols)
        plt.yticks([])
        # Make a second axis with units of time (s)
        max_xticks = 10
        xloc = plt.MaxNLocator(max_xticks)
        ax_ts.xaxis.set_major_locator(xloc)

        ax_ts2 = ax_ts.twiny()
        ax1Xs = ax_ts.get_xticks()

        ax2Xs = []
        for X in ax1Xs:
            # Limit to 2 decimal places
            seconds_val = round(X * tr, 2)
            ax2Xs.append(seconds_val)
        ax_ts2.set_xticks(ax1Xs)
        ax_ts2.set_xlim(ax_ts.get_xbound())
        ax_ts2.set_xticklabels(ax2Xs)
        ax_ts2.set_xlabel("seconds")

        ax_ts.plot(mmix[:, compnum], color=line_color)

        # Title will include variance from comptable
        comp_var = "{0:.2f}".format(comptable.loc[compnum,
                                                  "variance explained"])
        comp_kappa = "{0:.2f}".format(comptable.loc[compnum, "kappa"])
        comp_rho = "{0:.2f}".format(comptable.loc[compnum, "rho"])
        plt_title = "Comp. {}: variance: {}%, kappa: {}, rho: {}, {}".format(
            compnum, comp_var, comp_kappa, comp_rho, expl_text)
        title = ax_ts.set_title(plt_title)
        title.set_y(1.5)

        # Set range to ~1/10th of max positive or negative beta
        imgmax = 0.1 * np.abs(ts_B[:, :, :, compnum]).max()
        imgmin = imgmax * -1

        for idx, _ in enumerate(cuts):
            for imgslice in range(1, 6):
                ax = plt.subplot2grid((5, 6), (idx + 1, imgslice - 1),
                                      rowspan=1,
                                      colspan=1)
                ax.axis("off")

                if idx == 0:
                    to_plot = np.rot90(ts_B[imgslice * cuts[idx], :, :,
                                            compnum])
                if idx == 1:
                    to_plot = np.rot90(ts_B[:, imgslice * cuts[idx], :,
                                            compnum])
                if idx == 2:
                    to_plot = ts_B[:, :, imgslice * cuts[idx], compnum]

                ax_im = ax.imshow(to_plot,
                                  vmin=imgmin,
                                  vmax=imgmax,
                                  aspect="equal",
                                  cmap=png_cmap)

        # Add a color bar to the plot.
        ax_cbar = allplot.add_axes([0.8, 0.3, 0.03, 0.37])
        cbar = allplot.colorbar(ax_im, ax_cbar)
        cbar.set_label("Component Beta", rotation=90)
        cbar.ax.yaxis.set_label_position("left")

        # Get fft and freqs for this subject
        # adapted from @dangom
        spectrum, freqs = utils.get_spectrum(mmix[:, compnum], tr)

        # Plot it
        ax_fft = plt.subplot2grid((5, 6), (4, 0), rowspan=1, colspan=6)
        ax_fft.plot(freqs, spectrum)
        ax_fft.set_title("One Sided fft")
        ax_fft.set_xlabel("Hz")
        ax_fft.set_xlim(freqs[0], freqs[-1])
        plt.yticks([])

        # Fix spacing so TR label does overlap with other plots
        allplot.subplots_adjust(hspace=0.4)
        plot_name = "comp_{}.png".format(str(compnum).zfill(3))
        compplot_name = os.path.join(io_generator.out_dir, "figures",
                                     plot_name)
        plt.savefig(compplot_name)
        plt.close()
コード例 #3
0
def write_comp_figs(ts, mask, comptable, mmix, ref_img, out_dir, png_cmap):
    """
    Creates static figures that highlight certain aspects of tedana processing
    This includes a figure for each component showing the component time course,
    the spatial weight map and a fast Fourier transform of the time course

    Parameters
    ----------
    ts : (S x T) array_like
        Time series from which to derive ICA betas
    mask : (S,) array_like
        Boolean mask array
    comptable : (C x X) :obj:`pandas.DataFrame`
        Component metric table. One row for each component, with a column for
        each metric. The index should be the component number.
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    ref_img : :obj:`str` or img_like
        Reference image to dictate how outputs are saved to disk
    out_dir : :obj:`str`
        Figures folder within output directory
    png_cmap : :obj:`str`
        The name of a matplotlib colormap to use when making figures. Optional.
        Default colormap is 'coolwarm'

    """
    # Get the lenght of the timeseries
    n_vols = len(mmix)

    # Check that colormap provided exists
    if png_cmap not in plt.colormaps():
        LGR.warning(
            'Provided colormap is not recognized, proceeding with default')
        png_cmap = 'coolwarm'
    # regenerate the beta images
    ts_B = metrics.get_coeffs(ts, mmix, mask)
    ts_B = ts_B.reshape(ref_img.shape[:3] + ts_B.shape[1:])
    # trim edges from ts_B array
    ts_B = trim_edge_zeros(ts_B)

    # Mask out remaining zeros
    ts_B = np.ma.masked_where(ts_B == 0, ts_B)

    # Get repetition time from ref_img
    tr = ref_img.header.get_zooms()[-1]

    # Create indices for 6 cuts, based on dimensions
    cuts = [ts_B.shape[dim] // 6 for dim in range(3)]
    expl_text = ''

    # Remove trailing ';' from rationale column
    comptable['rationale'] = comptable['rationale'].str.rstrip(';')
    for compnum in comptable.index.values:
        if comptable.loc[compnum, "classification"] == 'accepted':
            line_color = 'g'
            expl_text = 'accepted'
        elif comptable.loc[compnum, "classification"] == 'rejected':
            line_color = 'r'
            expl_text = 'rejection reason(s): ' + comptable.loc[compnum,
                                                                "rationale"]
        elif comptable.loc[compnum, "classification"] == 'ignored':
            line_color = 'k'
            expl_text = 'ignored reason(s): ' + comptable.loc[compnum,
                                                              "rationale"]
        else:
            # Classification not added
            # If new, this will keep code running
            line_color = '0.75'
            expl_text = 'other classification'

        allplot = plt.figure(figsize=(10, 9))
        ax_ts = plt.subplot2grid((5, 6), (0, 0),
                                 rowspan=1,
                                 colspan=6,
                                 fig=allplot)

        ax_ts.set_xlabel('TRs')
        ax_ts.set_xlim(0, n_vols)
        plt.yticks([])
        # Make a second axis with units of time (s)
        max_xticks = 10
        xloc = plt.MaxNLocator(max_xticks)
        ax_ts.xaxis.set_major_locator(xloc)

        ax_ts2 = ax_ts.twiny()
        ax1Xs = ax_ts.get_xticks()

        ax2Xs = []
        for X in ax1Xs:
            # Limit to 2 decimal places
            seconds_val = round(X * tr, 2)
            ax2Xs.append(seconds_val)
        ax_ts2.set_xticks(ax1Xs)
        ax_ts2.set_xlim(ax_ts.get_xbound())
        ax_ts2.set_xticklabels(ax2Xs)
        ax_ts2.set_xlabel('seconds')

        ax_ts.plot(mmix[:, compnum], color=line_color)

        # Title will include variance from comptable
        comp_var = "{0:.2f}".format(comptable.loc[compnum,
                                                  "variance explained"])
        comp_kappa = "{0:.2f}".format(comptable.loc[compnum, "kappa"])
        comp_rho = "{0:.2f}".format(comptable.loc[compnum, "rho"])
        plt_title = ('Comp. {}: variance: {}%, kappa: {}, rho: {}, '
                     '{}'.format(compnum, comp_var, comp_kappa, comp_rho,
                                 expl_text))
        title = ax_ts.set_title(plt_title)
        title.set_y(1.5)

        # Set range to ~1/10th of max positive or negative beta
        imgmax = 0.1 * np.abs(ts_B[:, :, :, compnum]).max()
        imgmin = imgmax * -1

        for idx, cut in enumerate(cuts):
            for imgslice in range(1, 6):
                ax = plt.subplot2grid((5, 6), (idx + 1, imgslice - 1),
                                      rowspan=1,
                                      colspan=1)
                ax.axis('off')

                if idx == 0:
                    to_plot = np.rot90(ts_B[imgslice * cuts[idx], :, :,
                                            compnum])
                if idx == 1:
                    to_plot = np.rot90(ts_B[:, imgslice * cuts[idx], :,
                                            compnum])
                if idx == 2:
                    to_plot = ts_B[:, :, imgslice * cuts[idx], compnum]

                ax_im = ax.imshow(to_plot,
                                  vmin=imgmin,
                                  vmax=imgmax,
                                  aspect='equal',
                                  cmap=png_cmap)

        # Add a color bar to the plot.
        ax_cbar = allplot.add_axes([0.8, 0.3, 0.03, 0.37])
        cbar = allplot.colorbar(ax_im, ax_cbar)
        cbar.set_label('Component Beta', rotation=90)
        cbar.ax.yaxis.set_label_position('left')

        # Get fft and freqs for this subject
        # adapted from @dangom
        spectrum, freqs = get_spectrum(mmix[:, compnum], tr)

        # Plot it
        ax_fft = plt.subplot2grid((5, 6), (4, 0), rowspan=1, colspan=6)
        ax_fft.plot(freqs, spectrum)
        ax_fft.set_title('One Sided fft')
        ax_fft.set_xlabel('Hz')
        ax_fft.set_xlim(freqs[0], freqs[-1])
        plt.yticks([])

        # Fix spacing so TR label does overlap with other plots
        allplot.subplots_adjust(hspace=0.4)
        plot_name = 'comp_{}.png'.format(str(compnum).zfill(3))
        compplot_name = os.path.join(out_dir, plot_name)
        plt.savefig(compplot_name)
        plt.close()