def test_deploy_yaml(): rt = SeldonDeployRuntime( host="http://34.78.44.92/seldon-deploy/api/v1alpha1", user="******", oidc_server="https://34.78.44.92/auth/realms/deploy-realm", password="******", oidc_client_id="sd-api", verify_ssl=False, ) options = RuntimeOptions( runtime="tempo.seldon.SeldonKubernetesRuntime", k8s_options=KubernetesOptions(namespace="seldon"), ingress_options=IngressOptions(ssl=True, verify_ssl=False), ) sklearn_model = Model( name="test-iris-sklearn", platform=ModelFramework.SKLearn, uri="gs://seldon-models/sklearn/iris", protocol=SeldonProtocol(), runtime_options=options, ) spec = rt.to_k8s_yaml(sklearn_model) rtk = SeldonKubernetesRuntime() expected = rtk.to_k8s_yaml(sklearn_model) assert spec == expected
def test_kubernetes_spec(sklearn_model: Model): options = KubernetesOptions(namespace="production", replicas=1) k8s_object = KubernetesSpec(sklearn_model.details, SeldonProtocol(), options) expected = { "apiVersion": "machinelearning.seldon.io/v1", "kind": "SeldonDeployment", "metadata": { "name": sklearn_model.details.name, "namespace": options.namespace, }, "spec": { "protocol": "seldon", "predictors": [{ "graph": { "modelUri": sklearn_model.details.uri, "name": "classifier", "type": "MODEL", "implementation": KubernetesSpec.Implementations[ sklearn_model.details.platform], }, "name": "default", "replicas": options.replicas, }], }, } assert k8s_object.spec == expected
def test_deploy(): rt = SeldonDeployRuntime() config = SeldonDeployConfig( host="https://34.78.44.92/seldon-deploy/api/v1alpha1", user="******", password="******", oidc_server="https://34.78.44.92/auth/realms/deploy-realm", oidc_client_id="sd-api", verify_ssl=False, auth_type=SeldonDeployAuthType.oidc, ) rt.authenticate(settings=config) options = RuntimeOptions( runtime="tempo.seldon.SeldonKubernetesRuntime", k8s_options=KubernetesOptions(namespace="seldon"), ingress_options=IngressOptions(ssl=True, verify_ssl=False), ) sklearn_model = Model( name="test-iris-sklearn", platform=ModelFramework.SKLearn, uri="gs://seldon-models/sklearn/iris", protocol=SeldonProtocol(), runtime_options=options, ) rt.deploy(sklearn_model) rt.wait_ready(sklearn_model) print(sklearn_model(np.array([[4.9, 3.1, 1.5, 0.2]]))) rt.undeploy(sklearn_model)
def __init__(self, k8s_options: KubernetesOptions = None, protocol=None): if k8s_options is None: k8s_options = KubernetesOptions() self.k8s_options = k8s_options self.create_k8s_client() if protocol is None: self.protocol = SeldonProtocol() else: self.protocol = protocol
def sklearn_model() -> Model: model_path = os.path.join(TESTDATA_PATH, "sklearn", "iris") return Model( name="test-iris-sklearn", platform=ModelFramework.SKLearn, uri="gs://seldon-models/sklearn/iris", local_folder=model_path, protocol=SeldonProtocol(), runtime_options=RuntimeOptions(k8s_options=KubernetesOptions(namespace="production", replicas=1)), )
def test_kubernetes_spec_pipeline(): details = ModelDetails( name="inference-pipeline", platform=ModelFramework.TempoPipeline, uri="gs://seldon/tempo", local_folder="", inputs=ModelDataArgs(args=[]), outputs=ModelDataArgs(args=[]), ) options = KubernetesOptions(namespace="production", replicas=1) k8s_object = KubernetesSpec(details, KFServingV2Protocol(), options) container_spec = _V2ContainerFactory.get_container_spec(details) container_env = [{ "name": name, "value": value } for name, value in container_spec["environment"].items()] expected = { "apiVersion": "machinelearning.seldon.io/v1", "kind": "SeldonDeployment", "metadata": { "name": details.name, "namespace": options.namespace }, "spec": { "protocol": "kfserving", "predictors": [{ "componentSpecs": [{ "spec": { "containers": [{ "name": "classifier", "image": container_spec["image"], "env": container_env, "args": [], }] } }], "graph": { "modelUri": details.uri, "name": "classifier", "type": "MODEL", "implementation": "TRITON_SERVER", "serviceAccountName": "tempo-pipeline", }, "name": "default", "replicas": options.replicas, }], }, } assert k8s_object.spec == expected
def test_deploy_yaml(): rt = SeldonDeployRuntime( host="http://34.105.136.157/seldon-deploy/api/v1alpha1", user="******", password="******", k8s_options=KubernetesOptions(namespace="seldon"), ) sklearn_model = Model( name="test-iris-sklearn", runtime=rt, platform=ModelFramework.SKLearn, uri="gs://seldon-models/sklearn/iris", local_folder=os.getcwd() + "/sklearn", ) srt = SeldonKubernetesRuntime(k8s_options=KubernetesOptions(namespace="seldon")) sklearn_model.set_runtime(srt) expected = sklearn_model.to_k8s_yaml() sklearn_model.set_runtime(rt) assert sklearn_model.to_k8s_yaml() == expected
def test_seldon_model_yaml_auth(): m = Model( name="test-iris-xgboost", protocol=SeldonProtocol(), platform=ModelFramework.XGBoost, uri="gs://seldon-models/xgboost/iris", local_folder="/tmp/model", ) runtime = SeldonKubernetesRuntime( runtime_options=RuntimeOptions(k8s_options=KubernetesOptions(authSecretName="auth")) ) print(runtime.to_k8s_yaml(m))
def test_seldon_model_yaml_auth(expected): m = Model( name="test-iris-xgboost", protocol=SeldonProtocol(), platform=ModelFramework.XGBoost, uri="gs://seldon-models/xgboost/iris", local_folder="/tmp/model", ) runtime = SeldonKubernetesRuntime(runtime_options=SeldonCoreOptions( k8s_options=KubernetesOptions(authSecretName="auth"))) yaml_str = runtime.manifest(m) yaml_obj = yaml.safe_load(yaml_str) yaml_obj_expected = yaml.safe_load(expected) del yaml_obj["metadata"]["annotations"]["seldon.io/tempo-model"] assert yaml_obj == yaml_obj_expected
def test_tensorflow_spec(): md = ModelDetails( name="test", local_folder="", uri="", platform=ModelFramework.Tensorflow, inputs=ModelDataArgs(args=[]), outputs=ModelDataArgs(args=[]), ) protocol = SeldonProtocol() options = KubernetesOptions(namespace="production", replicas=1) runtime_options = RuntimeOptions(k8s_options=options) model_spec = ModelSpec(model_details=md, protocol=protocol, runtime_options=runtime_options) spec = get_container_spec(model_spec) assert "image" in spec assert "command" in spec
def test_deploy(): rt = SeldonDeployRuntime( host="http://34.105.136.157/seldon-deploy/api/v1alpha1", user="******", password="******", k8s_options=KubernetesOptions(namespace="seldon"), ) sklearn_model = Model( name="test-iris-sklearn", runtime=rt, platform=ModelFramework.SKLearn, uri="gs://seldon-models/sklearn/iris", local_folder=os.getcwd() + "/sklearn", ) # sklearn_model.deploy() sklearn_model(np.array([[4.9, 3.1, 1.5, 0.2]]))
def __init__( self, host: str, user: str, password: str, auth_type: SeldonDeployAuthType = SeldonDeployAuthType.session_cookie, k8s_options: KubernetesOptions = None, _protocol=None, ): if k8s_options is None: k8s_options = KubernetesOptions() self._k8s_options = k8s_options self._host = host self._user = user self._password = password self._auth_type = auth_type if _protocol is None: self.protocol = SeldonProtocol() else: self.protocol = _protocol
def k8s_runtime_v2(k8s_namespace: str) -> SeldonKubernetesRuntime: return SeldonKubernetesRuntime( k8s_options=KubernetesOptions(namespace=k8s_namespace), protocol=KFServingV2Protocol(), )
def k8s_runtime(k8s_namespace: str) -> SeldonKubernetesRuntime: return SeldonKubernetesRuntime(k8s_options=KubernetesOptions( namespace=k8s_namespace))
def runtime(namespace: str) -> SeldonKubernetesRuntime: return SeldonKubernetesRuntime(runtime_options=RuntimeOptions( k8s_options=KubernetesOptions(namespace=namespace)))
def test_kubernetes_spec_pipeline(): details = ModelDetails( name="inference-pipeline", platform=ModelFramework.TempoPipeline, uri="gs://seldon/tempo", local_folder="", inputs=ModelDataArgs(args=[]), outputs=ModelDataArgs(args=[]), ) options = KubernetesOptions(namespace="production", replicas=1) protocol = KFServingV2Protocol() runtime_options = RuntimeOptions(k8s_options=options) model_spec = ModelSpec(model_details=details, protocol=protocol, runtime_options=runtime_options) k8s_object = KubernetesSpec(model_spec) expected = { "apiVersion": "machinelearning.seldon.io/v1", "kind": "SeldonDeployment", "metadata": { "annotations": { "seldon.io/tempo-description": "", "seldon.io/tempo-model": '{"model_details": ' '{"name": ' '"inference-pipeline", ' '"local_folder": "", ' '"uri": ' '"gs://seldon/tempo", ' '"platform": "tempo", ' '"inputs": {"args": ' '[]}, "outputs": ' '{"args": []}, ' '"description": ""}, ' '"protocol": ' '"tempo.kfserving.protocol.KFServingV2Protocol", ' '"runtime_options": ' '{"runtime": null, ' '"docker_options": ' '{"defaultRuntime": ' '"tempo.seldon.SeldonDockerRuntime"}, ' '"k8s_options": ' '{"replicas": 1, ' '"minReplicas": null, ' '"maxReplicas": null, ' '"authSecretName": ' "null, " '"serviceAccountName": ' "null, " '"defaultRuntime": ' '"tempo.seldon.SeldonKubernetesRuntime", ' '"namespace": ' '"production"}, ' '"ingress_options": ' '{"ingress": ' '"tempo.ingress.istio.IstioIngress", ' '"ssl": false, ' '"verify_ssl": true}}}', }, "labels": { "seldon.io/tempo": "true" }, "name": "inference-pipeline", "namespace": "production", }, "spec": { "protocol": "kfserving", "predictors": [{ "graph": { "modelUri": details.uri, "name": "inference-pipeline", "type": "MODEL", "implementation": "TEMPO_SERVER", "serviceAccountName": "tempo-pipeline", }, "name": "default", "replicas": options.replicas, }], }, } assert k8s_object.spec == expected