コード例 #1
0
    def orthonormal_polynomials(self, *max_degree):
        '''
        Return the max_degree-1 first orthonormal polynomials associated with
        the NormalRandomVariable.

        Parameters
        ----------
        max_degree : int, optional
            The maximum degree of the returned polynomials. The default is
            None, choosing the default maximum degree associated with the
            constructor of the polynomials.

        Returns
        -------
        poly : tensap.OrthonormalPolynomials
            The generated orthonormal polynomials.

        '''
        poly = tensap.HermitePolynomials(*max_degree)
        if self != NormalRandomVariable(0, 1):
            # print('ShiftedOrthonormalPolynomials are created.')
            poly = tensap.ShiftedOrthonormalPolynomials(poly, self.mu,
                                                        self.sigma)
        return poly
# %% Projection on polynomial space through quadrature
def FUN(x):
    # Function to approximate
    return x**2/2


FUN = tensap.UserDefinedFunction(FUN, 1)
FUN.evaluation_at_multiple_points = True
X = tensap.NormalRandomVariable()

# Integration rule
I = X.gauss_integration_rule(5)

# Approximation basis
P = 3
H = tensap.PolynomialFunctionalBasis(tensap.HermitePolynomials(), range(P+1))

# Computation of the approximation
F = H.projection(FUN, I)

# Derivative and second derivative of F through projection
DF = H.projection(lambda x, F=F: F.eval_derivative(1, x), I)
DDF = H.projection(lambda x, DF=DF: DF.eval_derivative(1, x), I)

# Displays and error
print('\nProjection on polynomial space through quadrature')
N = 100
ERR_L2, ERR_L_INF = F.test_error(FUN, N, X)
print('Mean squared error = %2.5e' % ERR_L2)
plt.figure()
X_PLOT = np.linspace(-1, 1, 100)
コード例 #3
0
'''

import sys
import numpy as np
sys.path.insert(0, './../../../')
import tensap

# %% Approximation of a function F(X)
DIM = 6
FUN = tensap.UserDefinedFunction('x0 + x0*x1 + x0*x2**2 + x3**3 + x4 + x5',
                                 DIM)
FUN.evaluationAtMultiplePoints = True

DEGREE = 3
X = tensap.RandomVector(tensap.NormalRandomVariable(0, 1), DIM)
P = tensap.PolynomialFunctionalBasis(tensap.HermitePolynomials(),
                                     range(DEGREE+1))
BASES = tensap.FunctionalBases.duplicate(P, DIM)
GRIDS = X.random(1000)

G = tensap.FullTensorGrid([np.reshape(GRIDS[:, i], [-1, 1]) for
                           i in range(DIM)])
H = tensap.FullTensorProductFunctionalBasis(BASES)

F, OUTPUT = H.tensor_product_interpolation(FUN, G)

X_TEST = X.random(1000)
F_X_TEST = F(X_TEST)
Y_TEST = FUN(X_TEST)
ERR = np.linalg.norm(Y_TEST-F_X_TEST) / np.linalg.norm(Y_TEST)
print('Mean squared error = %2.5e\n' % ERR)