コード例 #1
0
    def integration_rule(self):
        '''
        Return the integration rule associated with the measure

        Returns
        -------
        tensap.IntegrationRule
            The integration rule associated with the measure

        '''
        return tensap.IntegrationRule(self.values, self.weights)
コード例 #2
0
    def integration_rule(self):
        '''
        Return the integration rule object associated with the discrete random
        variable.

        Returns
        -------
        tensap.IntegrationRule
            The integration rule object associated with the discrete random
            variable.

        '''
        return tensap.IntegrationRule(self.values, self.probabilities)
コード例 #3
0
    def gauss_integration_rule(self, nb_pts):
        '''
        Return the nb_pts-points gauss integration rule associated with the
        measure of self, using Golub-Welsch algorithm.

        Parameters
        ----------
        nb_pts : int
            The number of integration points.

        Returns
        -------
        tensap.IntegrationRule
            The integration rule associated with the measure of self.

        '''
        poly = self.orthonormal_polynomials(nb_pts + 1)
        if isinstance(poly, tensap.ShiftedOrthonormalPolynomials):
            shift = poly.shift
            scaling = poly.scaling
            poly = poly.polynomials
            flag = True
        else:
            flag = False

        coef = poly._recurrence_coefficients
        if coef.shape[1] < nb_pts:
            coef = poly.recurrence(poly.measure, nb_pts - 1)
        else:
            coef = coef[:, :nb_pts]

        # Jacobi matrix
        if nb_pts == 1:
            jacobi_matrix = np.diag(coef[0, :])
        else:
            jacobi_matrix = np.diag(coef[0, :]) + \
                np.diag(np.sqrt(coef[1, 1:]), -1) + \
                np.diag(np.sqrt(coef[1, 1:]), 1)

        # Quadrature points are the eigenvalues of the Jacobi matrix, weights
        # are deduced from the eigenvectors
        eig_values, eig_vectors = np.linalg.eig(jacobi_matrix)
        points = np.sort(eig_values)
        ind = np.argsort(eig_values)
        eig_vectors = eig_vectors[:, ind]

        weights = eig_vectors[0, :]**2 / np.sqrt(np.sum(eig_vectors**2, 0))

        if flag:
            points = shift + scaling * points
        return tensap.IntegrationRule(points, weights)