def convfn(x, hparams): return common_layers.subseparable_conv( x, hparams.hidden_size // div, (kw, kh), padding="SAME", separability=sep, name="conv_%d%d_sep%d_div%d" % (kw, kh, sep, div))
def testSubSeparableConv(self): for sep in [0, 1, 2, 4]: x = np.random.rand(5, 7, 1, 12) with self.test_session() as session: with tf.variable_scope("sep_%d" % sep): y = common_layers.subseparable_conv( tf.constant(x, dtype=tf.float32), 16, (3, 3), separability=sep) session.run(tf.global_variables_initializer()) res = session.run(y) self.assertEqual(res.shape, (5, 5, 1, 16))
def testSubSeparableConv(self): for sep in [0, 1, 2, 4]: x = np.random.rand(5, 7, 1, 12) with self.test_session() as session: with tf.variable_scope("sep_%d" % sep): y = common_layers.subseparable_conv(tf.constant( x, dtype=tf.float32), 16, (3, 1), separability=sep) session.run(tf.global_variables_initializer()) res = session.run(y) self.assertEqual(res.shape, (5, 5, 1, 16))