コード例 #1
0
def TransformerLM(vocab_size,
                  feature_depth=512,
                  feedforward_depth=2048,
                  num_layers=6,
                  num_heads=8,
                  dropout=0.1,
                  max_len=2048,
                  mode='train'):
    """Transformer language model (only uses the decoder part of Transformer).

  Args:
    vocab_size: int: vocab size
    feature_depth: int:  depth of embedding
    feedforward_depth: int: depth of feed-forward layer
    num_layers: int: number of encoder/decoder layers
    num_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
    return tl.Serial(
        tl.ShiftRight(), tl.Embedding(feature_depth, vocab_size),
        tl.Dropout(rate=dropout, mode=mode),
        tl.PositionalEncoding(max_len=max_len),
        tl.Serial(*[
            DecoderLayer(feature_depth, feedforward_depth, num_heads, dropout,
                         mode) for _ in range(num_layers)
        ]), tl.LayerNorm(), tl.Dense(vocab_size), tl.LogSoftmax())
コード例 #2
0
def PositionLookupTransformerLM(vocab_size=128,
                                d_feature=256,
                                d_feedforward=512,
                                n_layers=3,
                                n_heads=4,
                                dropout=0.1,
                                max_len=100,
                                mode='train'):
  """Transformer language model (only uses the decoder part of Transformer).

  Args:
    vocab_size: int: vocab size
    d_feature: int:  depth of embedding
    d_feedforward: int: depth of feed-forward layer
    n_layers: int: number of layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: maximal length
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
  positions = _POSITIONS[:max_len, :]
  return tl.Serial([
      tl.ShiftRight(),
      tl.Embedding(d_feature, vocab_size),
      tl.Dropout(rate=dropout, mode=mode),
      NewPositionalEncoding(positions=positions),
      [DecoderLayer(positions, d_feature, d_feedforward, n_heads, dropout, mode)
       for _ in range(n_layers)],
      PreservePosition(tl.LayerNorm()),
      tl.Dense(vocab_size),
      tl.LogSoftmax()
  ])
コード例 #3
0
def TransformerRevnetLM(vocab_size,
                        d_feature=512,
                        d_feedforward=2048,
                        d_attention_key=64,
                        d_attention_value=64,
                        n_layers=6,
                        n_heads=8,
                        dropout=0.1,
                        max_len=2048,
                        n_chunks=32,
                        n_attention_chunks=8,
                        attention_loop_stride=0,
                        mode='train'):
    """Reversible transformer language model (only uses a decoder, no encoder).

  Args:
    vocab_size: int: vocab size
    d_feature: int:  depth of *each half* of the two-part features
    d_feedforward: int: depth of feed-forward layer
    d_attention_key: int: depth of key vector for each attention head
    d_attention_value: int: depth of value vector for each attention head
    n_layers: int: number of decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    n_chunks: int: number of chunks (must match input pipeline)
    n_attention_chunks: int: number of chunks for attention
    attention_loop_stride: int: number of query elements to compute attention
      for in parallel. Set to 0 to disable memory-efficient attention.
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
    positional_embedder = [
        tl.Embedding(d_feature, vocab_size),
        # TODO(kitaev): add dropout
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Model(
        tl.Concatenate(n_items=n_chunks),
        tl.ShiftRight(),
        positional_embedder,
        tl.Dup(),
        ReversibleSerial([
            # pylint: disable=g-complex-comprehension
            DecoderBlock(d_feature, d_feedforward, d_attention_key,
                         d_attention_value, n_heads, n_attention_chunks,
                         attention_loop_stride, dropout, mode)
            for _ in range(n_layers)
        ]),
        tl.Parallel(tl.LayerNorm(), tl.LayerNorm()),
        tl.Concatenate(),
        Split(sections=n_chunks, axis=-2),  # pylint: disable=no-value-for-parameter
        Map([
            tl.Dense(vocab_size),
            tl.LogSoftmax(),
        ], sections=n_chunks),
    )
コード例 #4
0
def TransformerRevnetLM(vocab_size,
                        d_model=512,
                        d_ff=2048,
                        d_attention_key=64,
                        d_attention_value=64,
                        n_layers=6,
                        n_heads=8,
                        dropout=0.1,
                        max_len=2048,
                        n_chunks=32,
                        n_attention_chunks=8,
                        attention_type=DotProductAttention,
                        mode='train'):
    """Reversible transformer language model (only uses a decoder, no encoder).

  Args:
    vocab_size: int: vocab size
    d_model: int:  depth of *each half* of the two-part features
    d_ff: int: depth of feed-forward layer
    d_attention_key: int: depth of key vector for each attention head
    d_attention_value: int: depth of value vector for each attention head
    n_layers: int: number of decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    n_chunks: int: number of chunks (must match input pipeline)
    n_attention_chunks: int: number of chunks for attention
    attention_type: class: attention class to use, such as DotProductAttention.
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
    positional_embedder = [
        tl.Embedding(d_model, vocab_size),
        BroadcastedDropout(rate=dropout, mode=mode),  # pylint: disable=no-value-for-parameter
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Model(
        tl.Concatenate(n_items=n_chunks),
        tl.ShiftRight(),
        positional_embedder,
        tl.Dup(),
        tl.ReversibleSerial([
            # pylint: disable=g-complex-comprehension
            DecoderBlock(d_model, d_ff, d_attention_key, d_attention_value,
                         n_heads, n_attention_chunks, attention_type, dropout,
                         mode) for _ in range(n_layers)
        ]),
        tl.Parallel(tl.LayerNorm(), tl.LayerNorm()),
        tl.Concatenate(),
        Split(n_sections=n_chunks, axis=-2),  # pylint: disable=no-value-for-parameter
        Map([
            tl.Dense(vocab_size),
            tl.LogSoftmax(),
        ], n_sections=n_chunks),
    )
コード例 #5
0
def TransformerLM(vocab_size,
                  d_model=512,
                  d_ff=2048,
                  n_layers=6,
                  n_heads=8,
                  d_attention_key=None,
                  d_attention_value=None,
                  attention_type=tl.DotProductCausalAttention,
                  dropout=0.1,
                  share_kv=False,
                  max_len=2048,
                  mode='train'):
    """Returns a Transformer language model.

  The input to the model is a tensor of tokens. (This model uses only the
  decoder part of the overall Transformer.)

  Args:
    vocab_size: int: vocab size
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    d_attention_key: int: depth of key vector for each attention head
        (default is d_model // n_heads)
    d_attention_value: int: depth of value vector for each attention head
        (default is d_model // n_heads)
    attention_type: subclass of tl.BaseCausalAttention: attention class to use
    dropout: float: dropout rate (how much to drop out)
    share_kv: bool, whether to share keys and values in decoder attention
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    A Transformer language model as a layer that maps from a tensor of tokens
    to activations over a vocab set.
  """
    embedder = [
        tl.Embedding(d_model, vocab_size),
        tl.Dropout(rate=dropout, name='embedding', mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Model(  # tokens
        tl.ShiftRight(),  # toks
        embedder,  # vecs
        [
            DecoderBlock(  # pylint: disable=g-complex-comprehension
                d_model, d_ff, n_heads, d_attention_key, d_attention_value,
                attention_type, dropout, share_kv, i, mode)
            for i in range(n_layers)
        ],  # vecs
        tl.LayerNorm(),  # vecs
        tl.Dense(vocab_size),  # vecs
        tl.LogSoftmax(),  # vecs
    )
コード例 #6
0
ファイル: transformer.py プロジェクト: sshzhang/tensor2tensor
def Transformer(vocab_size,
                d_feature=512,
                d_feedforward=2048,
                n_layers=6,
                n_heads=8,
                dropout=0.1,
                max_len=2048,
                mode='train'):
    """Transformer.

  This model expects on input a pair (source, target).

  Args:
    vocab_size: int: vocab size (shared source and target).
    d_feature: int:  depth of embedding
    d_feedforward: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the Transformer model.
  """
    positional_embedder = [
        tl.Embedding(d_feature, vocab_size),
        tl.Dropout(rate=dropout, mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]
    encoder = [
        tl.Branch(positional_embedder, tl.PaddingMask()),
        [
            EncoderBlock(d_feature, d_feedforward, n_heads, dropout, mode)
            for _ in range(n_layers)
        ],
        tl.LayerNorm(),
    ]
    return tl.Model(
        tl.Parallel([], tl.ShiftRight()),
        tl.Parallel(encoder, positional_embedder),
        tl.Select(inputs=(('encoder', 'mask'), 'decoder'),
                  output=('decoder', ('mask', 'decoder'), 'encoder')),
        # (encoder_mask, decoder_input) -> encoder-decoder mask
        tl.Parallel([], tl.EncoderDecoderMask(), []),
        [
            EncoderDecoder(d_feature, d_feedforward, n_heads, dropout, mode)
            for _ in range(n_layers)
        ],
        tl.Select(0),  # Drop mask and encoder.
        tl.LayerNorm(),
        tl.Dense(vocab_size),
        tl.LogSoftmax(),
    )
コード例 #7
0
def ChunkedTransformerLM(vocab_size,
                         feature_depth=512,
                         feedforward_depth=2048,
                         num_layers=6,
                         num_heads=8,
                         dropout=0.1,
                         chunk_selector=None,
                         max_len=2048,
                         mode='train'):
    """Transformer language model operating on chunks.

  The input to this  model is a sequence presented as a list or tuple of chunks:
    (chunk1, chunk2, chunks3, ..., chunkN).
  Each chunk should have the same shape (batch, chunk-length) and together they
  represent a long sequence that's a concatenation chunk1,chunk2,...,chunkN.

  Chunked Transformer emulates the operation of a Transformer on this long
  sequence except for the chunked attention layer, which may attend to only
  a subset of the chunks to reduce memory use.

  Args:
    vocab_size: int: vocab size
    feature_depth: int:  depth of embedding
    feedforward_depth: int: depth of feed-forward layer
    num_layers: int: number of encoder/decoder layers
    num_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    chunk_selector: a function from chunk number to list of chunks to attend
      (if None, attends to the previous chunks which is equivalent to setting
       chunk_selector(x) = [] if x < 1 else [x-1] (TransformerXL); we attend
       to the current chunk with a causal mask too, selected chunks unmasked).
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
    stack = [
        ChunkedDecoderLayer(feature_depth, feedforward_depth, num_heads,
                            dropout, chunk_selector, mode)
        for _ in range(num_layers)
    ]
    # Below each Map(L) applies the layer L to each chunk independently.
    return tl.Serial(
        tl.ShiftRight(),
        tl.Map(tl.Embedding(feature_depth, vocab_size)),
        tl.Map(tl.Dropout(rate=dropout, mode=mode)),
        tl.PositionalEncoding(max_len=max_len),
        tl.Serial(*stack),
        tl.Map(tl.LayerNorm()),
        tl.Map(tl.Dense(vocab_size)),
        tl.Map(tl.LogSoftmax()),
    )
コード例 #8
0
def Transformer(vocab_size,
                feature_depth=512,
                feedforward_depth=2048,
                num_layers=6,
                num_heads=8,
                dropout=0.1,
                max_len=2048,
                mode='train'):
    """Transformer.

  This model expects on input a pair (source, target).

  Args:
    vocab_size: int: vocab size (shared source and target).
    feature_depth: int:  depth of embedding
    feedforward_depth: int: depth of feed-forward layer
    num_layers: int: number of encoder/decoder layers
    num_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the Transformer model.
  """
    embedding = layers.Serial(layers.Embedding(feature_depth, vocab_size),
                              layers.Dropout(rate=dropout, mode=mode),
                              layers.PositionalEncoding(max_len=max_len))
    encoder = layers.Serial(
        layers.Branch(),  # Branch input to create embedding and mask.
        layers.Parallel(embedding, layers.PaddingMask()),
        layers.Serial(*[
            EncoderLayer(feature_depth, feedforward_depth, num_heads, dropout,
                         mode) for _ in range(num_layers)
        ]),
        layers.Parallel(layers.LayerNorm(), layers.Identity()))
    stack = [
        EncoderDecoderLayer(feature_depth, feedforward_depth, num_heads,
                            dropout, mode) for _ in range(num_layers)
    ]
    return layers.Serial(
        layers.Parallel(layers.Identity(), layers.ShiftRight()),
        layers.Parallel(encoder, embedding),
        layers.UnnestBranches(),  # (encoder, encoder_mask, decoder_input)
        layers.Reorder(output=(0, (1, 2), 2)),
        layers.
        Parallel(  # (encoder_mask, decoder_input) -> encoder-decoder mask
            layers.Identity(), layers.EncoderDecoderMask(), layers.Identity()),
        layers.Serial(*stack),
        layers.ThirdBranch(),
        layers.LayerNorm(),
        layers.Dense(vocab_size),
        layers.LogSoftmax())
コード例 #9
0
def AtariCnn(hidden_sizes=(32, 32), output_size=128):
    # Input's shape = (B, T, H, W, C)
    return tl.Serial(
        tl.Div(divisor=255.0),
        # Have 4 copies of the input, each one shifted to the right by one.
        tl.Branch(
            tl.NoOp(), tl.ShiftRight(),
            tl.Serial(
                tl.ShiftRight(),
                tl.ShiftRight(),
            ), tl.Serial(
                tl.ShiftRight(),
                tl.ShiftRight(),
                tl.ShiftRight(),
            )),
        # Concatenated on the last axis.
        tl.Concatenate(axis=-1),  # (B, T, H, W, 4C)
        tl.Rebatch(tl.Conv(hidden_sizes[0], (5, 5), (2, 2), 'SAME'), 2),
        tl.Relu(),
        tl.Rebatch(tl.Conv(hidden_sizes[1], (5, 5), (2, 2), 'SAME'), 2),
        tl.Relu(),
        tl.Flatten(num_axis_to_keep=2),  # B, T and rest.
        tl.Dense(output_size),
        tl.Relu(),
        # Eventually this is shaped (B, T, output_size)
    )
コード例 #10
0
def TransformerRevnetLM(vocab_size,
                        d_feature=512,
                        d_feedforward=2048,
                        n_layers=6,
                        n_heads=8,
                        dropout=0.1,
                        max_len=2048,
                        n_chunks=32,
                        n_attention_chunks=8,
                        mode='train'):
  """Reversible transformer language model (only uses a decoder, no encoder).

  Args:
    vocab_size: int: vocab size
    d_feature: int:  depth of *each half* of the two-part features
    d_feedforward: int: depth of feed-forward layer
    n_layers: int: number of decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    n_chunks: int: number of chunks (must match input pipeline)
    n_attention_chunks: int: number of chunks for memory-efficient attention
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
  positional_embedder = [
      tl.Embedding(d_feature, vocab_size),
      # TODO(kitaev): dropout is disabled to save memory
      # tl.Dropout(rate=dropout, mode=mode),
      tl.PositionalEncoding(max_len=max_len),
  ]
  return tl.Model(
      tl.Concatenate(),
      tl.ShiftRight(),
      positional_embedder,
      Duplicate(),  # pylint: disable=no-value-for-parameter
      ReversibleSerial([
          DecoderBlock(d_feature, d_feedforward, n_heads, n_attention_chunks,
                       dropout, mode)
          for _ in range(n_layers)
      ]),
      tl.Parallel(tl.LayerNorm(), tl.LayerNorm()),
      tl.Concatenate(),
      Split(sections=n_chunks, axis=-2),  # pylint: disable=no-value-for-parameter
      Map([
          tl.Dense(vocab_size),
          tl.LogSoftmax(),
      ]),
  )
コード例 #11
0
def Transformer(vocab_size,
                feature_depth=512,
                feedforward_depth=2048,
                num_layers=6,
                num_heads=8,
                dropout=0.1,
                max_len=2048,
                mode='train'):
    """Transformer.

  This model expects on input a pair (source, target).

  Args:
    vocab_size: int: vocab size (shared source and target).
    feature_depth: int:  depth of embedding
    feedforward_depth: int: depth of feed-forward layer
    num_layers: int: number of encoder/decoder layers
    num_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the Transformer model.
  """
    embedding = tl.Serial(tl.Embedding(feature_depth, vocab_size),
                          tl.Dropout(rate=dropout, mode=mode),
                          tl.PositionalEncoding(max_len=max_len))
    encoder = tl.Serial(
        tl.Branch(embedding, tl.PaddingMask()),
        tl.Serial(*[
            EncoderLayer(feature_depth, feedforward_depth, num_heads, dropout,
                         mode) for _ in range(num_layers)
        ]), tl.Parallel(tl.LayerNorm(), tl.NoOp()))
    stack = [
        EncoderDecoderLayer(feature_depth, feedforward_depth, num_heads,
                            dropout, mode) for _ in range(num_layers)
    ]
    return tl.Serial(
        tl.Parallel(tl.NoOp(), tl.ShiftRight()),
        tl.Parallel(encoder, embedding),
        tl.Select(inputs=(('encoder', 'mask'), 'decoder'),
                  output=('encoder', ('mask', 'decoder'), 'decoder')),
        tl.Parallel(  # (encoder_mask, decoder_input) -> encoder-decoder mask
            tl.NoOp(), tl.EncoderDecoderMask(), tl.NoOp()),
        tl.Serial(*stack),
        tl.Select(2),  # Drop encoder and mask.
        tl.LayerNorm(),
        tl.Dense(vocab_size),
        tl.LogSoftmax())
コード例 #12
0
def TransformerLM(vocab_size,
                  d_feature=512,
                  d_feedforward=2048,
                  n_layers=6,
                  n_heads=8,
                  dropout=0.1,
                  max_len=2048,
                  mode='train'):
    """Returns a Transformer language model.

  The input to the model is a tensor of tokens. (This model uses only the
  decoder part of the overall Transformer.)

  Args:
    vocab_size: int: vocab size
    d_feature: int:  depth of embedding
    d_feedforward: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    A Transformer language model as a layer that maps from a tensor of tokens
    to activations over a vocab set.
  """
    embedder = [
        tl.Embedding(d_feature, vocab_size),
        tl.Dropout(rate=dropout, mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Model(  # tokens
        tl.ShiftRight(),  # toks
        embedder,  # vecs
        [
            DecoderBlock(d_feature, d_feedforward, n_heads, dropout, mode)
            for _ in range(n_layers)
        ],  # vecs
        tl.LayerNorm(),  # vecs
        tl.Dense(vocab_size),  # vecs
        tl.LogSoftmax(),  # vecs
    )
コード例 #13
0
ファイル: transformer.py プロジェクト: sshzhang/tensor2tensor
def TransformerLM(vocab_size,
                  d_feature=512,
                  d_feedforward=2048,
                  n_layers=6,
                  n_heads=8,
                  dropout=0.1,
                  max_len=2048,
                  mode='train'):
    """Transformer language model (only uses the decoder part of Transformer).

  Args:
    vocab_size: int: vocab size
    d_feature: int:  depth of embedding
    d_feedforward: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    the layer.
  """
    positional_embedder = [
        tl.Embedding(d_feature, vocab_size),
        tl.Dropout(rate=dropout, mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Model(
        tl.ShiftRight(),
        positional_embedder,
        [
            DecoderBlock(d_feature, d_feedforward, n_heads, dropout, mode)
            for _ in range(n_layers)
        ],
        tl.LayerNorm(),
        tl.Dense(vocab_size),
        tl.LogSoftmax(),
    )
コード例 #14
0
def Transformer(input_vocab_size,
                output_vocab_size=None,
                d_model=512,
                d_ff=2048,
                n_layers=6,
                n_heads=8,
                dropout=0.1,
                max_len=2048,
                mode='train'):
    """Returns a Transformer model.

  This model expects an input pair: target, source.

  Args:
    input_vocab_size: int: vocab size of the source.
    output_vocab_size: int (optional): vocab size of the target. If None, the
      source and target are assumed to have the same vocab.
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'

  Returns:
    A Transformer model as a layer that maps from a target, source pair to
    activations over a vocab set.
  """
    in_embed = [  # tokens
        tl.Embedding(d_model, input_vocab_size),  # vecs
        tl.Dropout(rate=dropout, mode=mode),  # vecs
        tl.PositionalEncoding(max_len=max_len),  # vecs
    ]

    if output_vocab_size is None:
        output_vocab_size = input_vocab_size
        out_embed = in_embed
    else:
        out_embed = [  # tokens
            tl.Embedding(d_model, output_vocab_size),  # vecs
            tl.Dropout(rate=dropout, mode=mode),  # vecs
            tl.PositionalEncoding(max_len=max_len),  # vecs
        ]

    encoder_stack = (  # masks vectors --> masks vectors
        [
            EncoderBlock(d_model, d_ff, n_heads, dropout, i, mode)
            for i in range(n_layers)
        ])

    encoder_decoder_stack = (  # vecs_d masks vecs_e --> vecs_d masks vecs_e
        [
            EncoderDecoder(d_model, d_ff, n_heads, dropout, i, mode)
            for i in range(n_layers)
        ])

    # Input: encoder_side_tokens, decoder_side_tokens
    return tl.Model(  # tokens_e tokens_d
        tl.Swap(),  # toks_d toks_e

        # Encode.
        tl.Parallel(  # toks_d        toks_e
            [],
            [
                tl.Dup(),  # ______ toks_e toks_e
                tl.Parallel(in_embed, tl.PaddingMask()),  # ______ vecs_e masks
                encoder_stack,  # ______ vecs_e masks
                tl.LayerNorm(),  # ______ vecs_e .....
                tl.Swap()
            ]),  # ______ masks  vecs_e

        # Decode.                                  #        toks_d masks vecs_e
        tl.ShiftRight(),  #        toks_d ..... ......
        out_embed,  #        vecs_d ..... ......
        tl.Dup(),  # vecs_d vecs_d ..... ......
        tl.Parallel([], tl.EncoderDecoderMask()),  # ______    masks     ......
        encoder_decoder_stack,  # vecs_d    masks     vecs_e
        tl.Parallel([], tl.Drop(), tl.Drop()),  # vecs_d
        tl.LayerNorm(),  # vecs_d
        tl.Dense(output_vocab_size),  # vecs_d
        tl.LogSoftmax(),  # vecs_d
    )
コード例 #15
0
ファイル: atari_cnn.py プロジェクト: hubayirp/fabric-vsf
def _shift_right(n):  # pylint: disable=invalid-name
    return [tl.ShiftRight()] * n
コード例 #16
0
def TransformerLM(vocab_size,
                  d_model=512,
                  d_ff=2048,
                  n_layers=6,
                  n_heads=8,
                  d_attention_key=None,
                  d_attention_value=None,
                  attention_type=tl.DotProductCausalAttention,
                  dropout=0.1,
                  share_qk=False,
                  max_len=2048,
                  n_chunks=0,
                  mode='train'):
  """Returns a Transformer language model.

  The input to the model is a tensor of tokens. (This model uses only the
  decoder part of the overall Transformer.)

  Args:
    vocab_size: int: vocab size
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    d_attention_key: int: depth of key vector for each attention head
        (default is d_model // n_heads)
    d_attention_value: int: depth of value vector for each attention head
        (default is d_model // n_heads)
    attention_type: subclass of tl.BaseCausalAttention: attention class to use
    dropout: float: dropout rate (how much to drop out)
    share_qk: bool, whether to share queries and keys in decoder attention
    max_len: int: maximum symbol length for positional encoding
    n_chunks: int: number of chunks (must match input pipeline)
    mode: str: 'train', 'eval' or 'predict', predict mode is for fast inference

  Returns:
    A Transformer language model as a layer that maps from a tensor of tokens
    to activations over a vocab set.
  """
  if n_chunks == 0:
    concatenate_chunks = split_chunks = []
  else:
    concatenate_chunks = tl.Concatenate(n_items=n_chunks)
    split_chunks = tl.Split(n_sections=n_chunks, axis=-2)

  embedder = [
      tl.Embedding(d_model, vocab_size),
      tl.Dropout(rate=dropout, name='embedding', mode=mode),
      tl.PositionalEncoding(max_len=max_len, mode=mode),
  ]

  return tl.Model(                  # tokens (or chunked tuple of tokens)
      concatenate_chunks,           # tokens
      tl.ShiftRight(mode=mode),     # toks
      embedder,                     # vecs
      [DecoderBlock(  # pylint: disable=g-complex-comprehension
          d_model, d_ff, n_heads, d_attention_key, d_attention_value,
          attention_type, dropout, share_qk, i, mode)
       for i in range(n_layers)],   # vecs
      tl.LayerNorm(),               # vecs
      tl.Dense(vocab_size),         # vecs
      tl.LogSoftmax(),              # vecs
      split_chunks,                 # vecs (or chunked tuple of vecs)
  )