コード例 #1
0
ファイル: ppo_test.py プロジェクト: xinan-jiang/tensor2tensor
    def test_collect_trajectories(self):
        observation_shape = (2, 3, 4)
        num_actions = 2
        policy_params, policy_apply = ppo.policy_net(
            self.rng_key,
            (-1, -1) + observation_shape,
            num_actions,
            # flatten except batch and time
            # step dimensions.
            [layers.Flatten(num_axis_to_keep=2)])

        # We'll get done at time-step #5, starting from 0, therefore in 6 steps.
        done_time_step = 5
        env = fake_env.FakeEnv(observation_shape,
                               num_actions,
                               done_time_step=done_time_step)

        num_trajectories = 5
        trajectories = ppo.collect_trajectories(
            env,
            policy_fun=lambda obs: policy_apply(obs, policy_params),
            num_trajectories=num_trajectories,
            policy="categorical-sampling")

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((done_time_step + 2, ) + observation_shape,
                             observations.shape)
            self.assertEqual((done_time_step + 1, ), actions.shape)
            self.assertEqual((done_time_step + 1, ), rewards.shape)

        # Test collect using a Policy and Value function.
        pnv_params, pnv_apply = ppo.policy_and_value_net(
            self.rng_key, (-1, -1) + observation_shape, num_actions,
            [layers.Flatten(num_axis_to_keep=2)])

        trajectories = ppo.collect_trajectories(
            env,
            policy_fun=lambda obs: pnv_apply(obs, pnv_params)[0],
            num_trajectories=num_trajectories,
            policy="categorical-sampling")

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((done_time_step + 2, ) + observation_shape,
                             observations.shape)
            self.assertEqual((done_time_step + 1, ), actions.shape)
            self.assertEqual((done_time_step + 1, ), rewards.shape)
コード例 #2
0
ファイル: ppo_test.py プロジェクト: zwcdp/tensor2tensor
    def test_collect_trajectories(self):
        observation_shape = (2, 3, 4)
        num_actions = 2
        policy_params, policy_apply = ppo.policy_net(
            self.rng_key,
            (-1, -1) + observation_shape,
            num_actions,
            # flatten except batch and time
            # step dimensions.
            [stax.Flatten(2)])

        # We'll get done at time-step #10, starting from 0, therefore in 11 steps.
        done_time_step = 5
        env = fake_env.FakeEnv(observation_shape,
                               num_actions,
                               done_time_step=done_time_step)

        num_trajectories = 5
        trajectories = ppo.collect_trajectories(env,
                                                policy_apply,
                                                policy_params,
                                                num_trajectories,
                                                policy="categorical-sampling")

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((done_time_step + 2, ) + observation_shape,
                             observations.shape)
            self.assertEqual((done_time_step + 1, ), actions.shape)
            self.assertEqual((done_time_step + 1, ), rewards.shape)
コード例 #3
0
ファイル: ppo_test.py プロジェクト: xinbreeze/tensor2tensor
    def test_collect_trajectories_max_timestep(self):
        self.rng_key, key1, key2 = jax_random.split(self.rng_key, num=3)
        observation_shape = (2, 3, 4)
        num_actions = 2
        pnv_params, pnv_apply = ppo.policy_and_value_net(
            key1, (-1, -1) + observation_shape, num_actions,
            lambda: [layers.Flatten(num_axis_to_keep=2)])

        def pnv_fun(obs, rng=None):
            rng, r = jax_random.split(rng)
            lp, v = pnv_apply(obs, pnv_params, rng=r)
            return lp, v, rng

        # We'll get done at time-step #5, starting from 0, therefore in 6 steps.
        done_time_step = 5
        env = fake_env.FakeEnv(observation_shape,
                               num_actions,
                               done_time_step=done_time_step)

        num_trajectories = 5

        # Let's collect trajectories only till `max_timestep`.
        max_timestep = 3

        # we're testing when we early stop the trajectory.
        assert max_timestep < done_time_step

        trajectories = ppo.collect_trajectories(
            env,
            policy_fun=pnv_fun,
            num_trajectories=num_trajectories,
            policy="categorical-sampling",
            max_timestep=max_timestep,
            rng=key2)

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((max_timestep, ) + observation_shape,
                             observations.shape)
            self.assertEqual((max_timestep - 1, ), actions.shape)
            self.assertEqual((max_timestep - 1, ), rewards.shape)
コード例 #4
0
    def test_collect_trajectories_max_timestep(self):
        observation_shape = (2, 3, 4)
        num_actions = 2
        policy_params, policy_apply = ppo.policy_net(
            self.rng_key,
            (-1, -1) + observation_shape,
            num_actions,
            # flatten except batch and time
            # step dimensions.
            [layers.Flatten(num_axis_to_keep=2)])

        # We'll get done at time-step #5, starting from 0, therefore in 6 steps.
        done_time_step = 5
        env = fake_env.FakeEnv(observation_shape,
                               num_actions,
                               done_time_step=done_time_step)

        num_trajectories = 5

        # Let's collect trajectories only till `max_timestep`.
        max_timestep = 3

        # we're testing when we early stop the trajectory.
        assert max_timestep < done_time_step

        trajectories = ppo.collect_trajectories(env,
                                                policy_apply,
                                                policy_params,
                                                num_trajectories,
                                                policy="categorical-sampling",
                                                max_timestep=max_timestep)

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((max_timestep, ) + observation_shape,
                             observations.shape)
            self.assertEqual((max_timestep - 1, ), actions.shape)
            self.assertEqual((max_timestep - 1, ), rewards.shape)
コード例 #5
0
ファイル: ppo_test.py プロジェクト: xinbreeze/tensor2tensor
    def test_collect_trajectories(self):
        self.rng_key, key1, key2, key3, key4 = jax_random.split(self.rng_key,
                                                                num=5)
        observation_shape = (2, 3, 4)
        num_actions = 2
        policy_params, policy_apply = ppo.policy_net(
            key1,
            (-1, -1) + observation_shape,
            num_actions,
            # flatten except batch and time
            # step dimensions.
            [layers.Flatten(num_axis_to_keep=2)])

        # We'll get done at time-step #5, starting from 0, therefore in 6 steps.
        done_time_step = 5
        env = fake_env.FakeEnv(observation_shape,
                               num_actions,
                               done_time_step=done_time_step)

        def policy_fun(obs, rng=None):
            rng, r = jax_random.split(rng)
            return policy_apply(obs, policy_params, rng=r), (), rng

        num_trajectories = 5
        trajectories = ppo.collect_trajectories(
            env,
            policy_fun=policy_fun,
            num_trajectories=num_trajectories,
            policy="categorical-sampling",
            rng=key2)

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((done_time_step + 2, ) + observation_shape,
                             observations.shape)
            self.assertEqual((done_time_step + 1, ), actions.shape)
            self.assertEqual((done_time_step + 1, ), rewards.shape)

        # Test collect using a Policy and Value function.
        pnv_params, pnv_apply = ppo.policy_and_value_net(
            key3, (-1, -1) + observation_shape, num_actions,
            lambda: [layers.Flatten(num_axis_to_keep=2)])

        def pnv_fun(obs, rng=None):
            rng, r = jax_random.split(rng)
            lp, v = pnv_apply(obs, pnv_params, rng=r)
            return lp, v, rng

        trajectories = ppo.collect_trajectories(
            env,
            policy_fun=pnv_fun,
            num_trajectories=num_trajectories,
            policy="categorical-sampling",
            rng=key4)

        # Number of trajectories is as expected.
        self.assertEqual(num_trajectories, len(trajectories))

        # Shapes of observations, actions and rewards are as expected.
        for observations, actions, rewards in trajectories:
            # observations are one more in number than rewards or actions.
            self.assertEqual((done_time_step + 2, ) + observation_shape,
                             observations.shape)
            self.assertEqual((done_time_step + 1, ), actions.shape)
            self.assertEqual((done_time_step + 1, ), rewards.shape)