def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam, maxOuterIter, previousDisplacement, previousDisplacementInverse): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance = 1e-4 displacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) gradientField = np.empty(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacementInverse = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) if (previousDisplacement != None): totalDisplacement[...] = previousDisplacement totalDisplacementInverse[...] = previousDisplacementInverse outerIter = 0 framesToCapture = 5 maxOuterIter = framesToCapture * ( (maxOuterIter + framesToCapture - 1) / framesToCapture) itersPerCapture = maxOuterIter / framesToCapture plt.figure() while (outerIter < maxOuterIter): outerIter += 1 print 'Outer iter:', outerIter warped = np.array(tf.warp_image(moving, totalDisplacement, None)) if ((outerIter == 1) or (outerIter % itersPerCapture == 0)): plt.subplot(1, framesToCapture + 1, 1 + outerIter / itersPerCapture) rcommon.overlayImages(warped, fixed, False) plt.title('Iter:' + str(outerIter - 1)) sigmaField = np.ones_like(warped, dtype=np.float64) deltaField = fixed - warped gradientField[:, :, 0], gradientField[:, :, 1] = sp.gradient(warped) maxVariation = 1 + innerTolerance innerIter = 0 displacement[...] = 0 maxInnerIter = 200 while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)): innerIter += 1 maxVariation = tf.iterateDisplacementField2DCYTHON( deltaField, sigmaField, gradientField, lambdaParam, displacement, None) #maxDisplacement=np.max(np.abs(displacement)) expd, invexpd = tf.vector_field_exponential(displacement, True) totalDisplacement, stats = tf.compose_vector_fields( displacement, totalDisplacement) #totalDisplacement=np.array(totalDisplacement) totalDisplacementInverse, stats = tf.compose_vector_fields( totalDisplacementInverse, invexpd) #totalDisplacementInverse=np.array(totalDisplacementInverse) #if(maxDisplacement<outerTolerance): #break print "Iter: ", innerIter, "Max variation:", maxVariation return totalDisplacement, totalDisplacementInverse
def testInversion(lambdaParam): fname0='data/circle.png' fname1='data/C.png' circleToCDisplacementName='circleToCDisplacement.npy' circleToCDisplacementInverseName='circleToCDisplacementInverse.npy' nib_moving=plt.imread(fname0) nib_fixed=plt.imread(fname1) moving=nib_moving[:,:,0] fixed=nib_fixed[:,:,1] moving=(moving-moving.min())/(moving.max() - moving.min()) fixed=(fixed-fixed.min())/(fixed.max() - fixed.min()) level=3 maskMoving=moving>0 maskFixed=fixed>0 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, np.ones_like(maskMoving))] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(fixed, level, np.ones_like(maskFixed))] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] maxOuterIter=[10,50,100,100,100,100,100,100,100] if(os.path.exists(circleToCDisplacementName)): displacement=np.load(circleToCDisplacementName) inverse=np.load(circleToCDisplacementInverseName) else: displacement, inverse=estimateMonomodalDiffeomorphicField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0,displacementList) np.save(circleToCDisplacementName, displacement) np.save(circleToCDisplacementInverseName, inverse) print 'vector field exponential' expd, invexpd=tf.vector_field_exponential(displacement, True) print 'vector field inversion' directInverse=tf.invert_vector_field(displacement, 1.0, 10000, 1e-7) print 'vector field inversion' directExpInverse=tf.invert_vector_field(expd, 1.0, 10000, 1e-7) ###Now compare inversions### residualJoint=np.array(tf.compose_vector_fields(displacement, inverse)[0]) residualDirect=np.array(tf.compose_vector_fields(displacement, directInverse)[0]) residualExpJoint=np.array(tf.compose_vector_fields(expd, invexpd)[0]) residualExpDirect=np.array(tf.compose_vector_fields(expd, directExpInverse)[0]) rcommon.plotDiffeomorphism(displacement, inverse, residualJoint, 'D-joint') rcommon.plotDiffeomorphism(expd, invexpd, residualExpJoint, 'expD-joint') d,invd,res,jacobian=rcommon.plotDiffeomorphism(displacement, directInverse, residualDirect, 'D-direct') rcommon.plotDiffeomorphism(expd, directExpInverse, residualExpDirect, 'expD-direct') sp.misc.imsave('circleToC_deformation.png', d) sp.misc.imsave('circleToC_inverse_deformation.png', invd) sp.misc.imsave('circleToC_residual_deformation.png', res) tf.write_double_buffer(np.array(displacement).reshape(-1), '../inverse/experiments/displacement.bin') tf.write_double_buffer(np.array(displacement).reshape(-1), '../inverse/experiments/displacement_clean.bin')
def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam, maxOuterIter, previousDisplacement, previousDisplacementInverse): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance=1e-4 displacement =np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) gradientField =np.empty(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacement=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacementInverse=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) if(previousDisplacement!=None): totalDisplacement[...]=previousDisplacement totalDisplacementInverse[...]=previousDisplacementInverse outerIter=0 framesToCapture=5 maxOuterIter=framesToCapture*((maxOuterIter+framesToCapture-1)/framesToCapture) itersPerCapture=maxOuterIter/framesToCapture plt.figure() while(outerIter<maxOuterIter): outerIter+=1 print 'Outer iter:', outerIter warped=np.array(tf.warp_image(moving, totalDisplacement, None)) if((outerIter==1) or (outerIter%itersPerCapture==0)): plt.subplot(1,framesToCapture+1, 1+outerIter/itersPerCapture) rcommon.overlayImages(warped, fixed, False) plt.title('Iter:'+str(outerIter-1)) sigmaField=np.ones_like(warped, dtype=np.float64) deltaField=fixed-warped gradientField[:,:,0], gradientField[:,:,1]=sp.gradient(warped) maxVariation=1+innerTolerance innerIter=0 displacement[...]=0 maxInnerIter=200 while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)): innerIter+=1 maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, gradientField, lambdaParam, displacement, None) #maxDisplacement=np.max(np.abs(displacement)) expd, invexpd=tf.vector_field_exponential(displacement, True) totalDisplacement, stats=tf.compose_vector_fields(displacement, totalDisplacement) #totalDisplacement=np.array(totalDisplacement) totalDisplacementInverse, stats=tf.compose_vector_fields(totalDisplacementInverse, invexpd) #totalDisplacementInverse=np.array(totalDisplacementInverse) #if(maxDisplacement<outerTolerance): #break print "Iter: ",innerIter, "Max variation:",maxVariation return totalDisplacement, totalDisplacementInverse
def update(new_displacement, current_displacement): expd, invexpd = tf.vector_field_exponential(new_displacement, True) updated, stats = tf.compose_vector_fields(expd, current_displacement) return updated, stats[0]
def testInversion(lambdaParam): fname0 = 'data/circle.png' fname1 = 'data/C.png' circleToCDisplacementName = 'circleToCDisplacement.npy' circleToCDisplacementInverseName = 'circleToCDisplacementInverse.npy' nib_moving = plt.imread(fname0) nib_fixed = plt.imread(fname1) moving = nib_moving[:, :, 0] fixed = nib_fixed[:, :, 1] moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) level = 3 maskMoving = moving > 0 maskFixed = fixed > 0 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, np.ones_like(maskMoving)) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(fixed, level, np.ones_like(maskFixed)) ] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] maxOuterIter = [10, 50, 100, 100, 100, 100, 100, 100, 100] if (os.path.exists(circleToCDisplacementName)): displacement = np.load(circleToCDisplacementName) inverse = np.load(circleToCDisplacementInverseName) else: displacement, inverse = estimateMonomodalDiffeomorphicField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) np.save(circleToCDisplacementName, displacement) np.save(circleToCDisplacementInverseName, inverse) print 'vector field exponential' expd, invexpd = tf.vector_field_exponential(displacement, True) print 'vector field inversion' directInverse = tf.invert_vector_field(displacement, 1.0, 10000, 1e-7) print 'vector field inversion' directExpInverse = tf.invert_vector_field(expd, 1.0, 10000, 1e-7) ###Now compare inversions### residualJoint = np.array( tf.compose_vector_fields(displacement, inverse)[0]) residualDirect = np.array( tf.compose_vector_fields(displacement, directInverse)[0]) residualExpJoint = np.array(tf.compose_vector_fields(expd, invexpd)[0]) residualExpDirect = np.array( tf.compose_vector_fields(expd, directExpInverse)[0]) rcommon.plotDiffeomorphism(displacement, inverse, residualJoint, 'D-joint') rcommon.plotDiffeomorphism(expd, invexpd, residualExpJoint, 'expD-joint') d, invd, res, jacobian = rcommon.plotDiffeomorphism( displacement, directInverse, residualDirect, 'D-direct') rcommon.plotDiffeomorphism(expd, directExpInverse, residualExpDirect, 'expD-direct') sp.misc.imsave('circleToC_deformation.png', d) sp.misc.imsave('circleToC_inverse_deformation.png', invd) sp.misc.imsave('circleToC_residual_deformation.png', res) tf.write_double_buffer( np.array(displacement).reshape(-1), '../inverse/experiments/displacement.bin') tf.write_double_buffer( np.array(displacement).reshape(-1), '../inverse/experiments/displacement_clean.bin')
def runArcesExperiment(rootDir, lambdaParam, maxOuterIter): #---Load displacement field--- dxName = rootDir + 'Vx.dat' dyName = rootDir + 'Vy.dat' dx = np.loadtxt(dxName) dy = np.loadtxt(dyName) GT_in = np.ndarray(shape=dx.shape + (2, ), dtype=np.float64) GT_in[..., 0] = dy GT_in[..., 1] = dx GT, GTinv = tf.vector_field_exponential(GT_in) GTres = tf.compose_vector_fields(GT, GTinv) #---Load input images--- fnameT1 = rootDir + 't1.jpg' fnameT2 = rootDir + 't2.jpg' fnamePD = rootDir + 'pd.jpg' fnameMask = rootDir + 'Mascara.bmp' t1 = plt.imread(fnameT1)[..., 0].astype(np.float64) t2 = plt.imread(fnameT2)[..., 0].astype(np.float64) pd = plt.imread(fnamePD)[..., 0].astype(np.float64) t1 = (t1 - t1.min()) / (t1.max() - t1.min()) t2 = (t2 - t2.min()) / (t2.max() - t2.min()) pd = (pd - pd.min()) / (pd.max() - pd.min()) mask = plt.imread(fnameMask).astype(np.float64) fixed = t1 moving = t2 maskMoving = mask > 0 maskFixed = mask > 0 fixed *= mask moving *= mask plt.figure() plt.subplot(1, 4, 1) plt.imshow(t1, cmap=plt.cm.gray) plt.title('Input T1') plt.subplot(1, 4, 2) plt.imshow(t2, cmap=plt.cm.gray) plt.title('Input T2') plt.subplot(1, 4, 3) plt.imshow(pd, cmap=plt.cm.gray) plt.title('Input PD') plt.subplot(1, 4, 4) plt.imshow(mask, cmap=plt.cm.gray) plt.title('Input Mask') #------------------------- warpedFixed = rcommon.warpImage(fixed, GT) print 'Registering T2 (template) to deformed T1 (template)...' level = 3 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(warpedFixed, level, maskFixed) ] plt.figure() plt.subplot(1, 2, 1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1, 2, 2) plt.imshow(warpedFixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] displacement, inverse = estimateMultimodalDiffeomorphicField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) residual = tf.compose_vector_fields(displacement, inverse) warpPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level + 1) ] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) displacement[..., 0] *= (maskFixed) displacement[..., 1] *= (maskFixed) #----plot deformations--- rcommon.plotDiffeomorphism(GT, GTinv, GTres, 7) rcommon.plotDiffeomorphism(displacement, inverse, residual, 7) #----statistics--- nrm = np.sqrt(displacement[..., 0]**2 + displacement[..., 1]**2) nrm *= maskFixed maxNorm = np.max(nrm) residual = ((displacement - GT))**2 meanDisplacementError = np.sqrt(residual.sum(2) * (maskFixed)).mean() stdevDisplacementError = np.sqrt(residual.sum(2) * (maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError, '(', stdevDisplacementError, ')'
def estimateNewMultimodalDiffeomorphicField2D(moving, fixed, lambdaDisplacement, quantizationLevels, maxOuterIter, previousDisplacement, previousDisplacementInverse): innerTolerance = 1e-4 outerTolerance = 1e-3 sh = moving.shape X0, X1 = np.mgrid[0:sh[0], 0:sh[1]] displacement = np.empty(shape=(moving.shape) + (2, ), dtype=np.float64) residuals = np.zeros(shape=(moving.shape), dtype=np.float64) gradientField = np.empty(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacementInverse = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) if (previousDisplacement != None): totalDisplacement[...] = previousDisplacement totalDisplacementInverse[...] = previousDisplacementInverse fixedQ = None grayLevels = None fixedQ, grayLevels, hist = tf.quantizePositiveImageCYTHON( fixed, quantizationLevels) fixedQ = np.array(fixedQ, dtype=np.int32) finished = False outerIter = 0 maxDisplacement = None maxVariation = None maxResidual = 0 while ((not finished) and (outerIter < maxOuterIter)): outerIter += 1 #---E step--- warped = ndimage.map_coordinates( moving, [X0 + totalDisplacement[..., 0], X1 + totalDisplacement[..., 1]], prefilter=True) movingMask = ((moving > 0) * 1.0) * ((fixed > 0) * 1.0) warpedMovingMask = ndimage.map_coordinates( movingMask, [X0 + totalDisplacement[..., 0], X1 + totalDisplacement[..., 1]], order=0, prefilter=False) warpedMovingMask = warpedMovingMask.astype(np.int32) means, variances = tf.computeMaskedImageClassStatsCYTHON( warpedMovingMask, warped, quantizationLevels, fixedQ) means[0] = 0 means = np.array(means) variances = np.array(variances) sigmaField = variances[fixedQ] deltaField = means[ fixedQ] - warped #########Delta-field using Arce's rule #--M step-- g0, g1 = sp.gradient(warped) gradientField[:, :, 0] = g0 gradientField[:, :, 1] = g1 maxVariation = 1 + innerTolerance innerIter = 0 maxInnerIter = 1000 displacement[...] = 0 while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)): innerIter += 1 maxVariation = tf.iterateDisplacementField2DCYTHON( deltaField, sigmaField, gradientField, lambdaDisplacement, totalDisplacement, displacement, residuals) opt = np.max(residuals) if (maxResidual < opt): maxResidual = opt #--accumulate displacement-- expd, invexpd = tf.vector_field_exponential(displacement) totalDisplacement = tf.compose_vector_fields(expd, totalDisplacement) totalDisplacementInverse = tf.compose_vector_fields( totalDisplacementInverse, invexpd) #--check stop condition-- nrm = np.sqrt(displacement[..., 0]**2 + displacement[..., 1]**2) #maxDisplacement=np.max(nrm) maxDisplacement = np.mean(nrm) if ((maxDisplacement < outerTolerance) or (outerIter >= maxOuterIter)): finished = True # plt.figure() # plt.subplot(1,3,1) # plt.imshow(means[fixedQ],cmap=plt.cm.gray) # plt.title("Estimated warped modality") # plt.subplot(1,3,2) # plt.imshow(fixedQ,cmap=plt.cm.gray) # plt.title("Quantized") # plt.subplot(1,3,3) # plt.plot(means) # plt.title("Means") print "Iter: ", outerIter, "Mean displacement:", maxDisplacement, "Max variation:", maxVariation, "Max residual:", maxResidual if (previousDisplacement != None): return totalDisplacement - previousDisplacement, totalDisplacementInverse return totalDisplacement, totalDisplacementInverse
def runArcesExperiment(rootDir, lambdaParam, maxOuterIter): #---Load displacement field--- dxName=rootDir+'Vx.dat' dyName=rootDir+'Vy.dat' dx=np.loadtxt(dxName) dy=np.loadtxt(dyName) GT_in=np.ndarray(shape=dx.shape+(2,), dtype=np.float64) GT_in[...,0]=dy GT_in[...,1]=dx GT, GTinv=tf.vector_field_exponential(GT_in) GTres=tf.compose_vector_fields(GT, GTinv) #---Load input images--- fnameT1=rootDir+'t1.jpg' fnameT2=rootDir+'t2.jpg' fnamePD=rootDir+'pd.jpg' fnameMask=rootDir+'Mascara.bmp' t1=plt.imread(fnameT1)[...,0].astype(np.float64) t2=plt.imread(fnameT2)[...,0].astype(np.float64) pd=plt.imread(fnamePD)[...,0].astype(np.float64) t1=(t1-t1.min())/(t1.max()-t1.min()) t2=(t2-t2.min())/(t2.max()-t2.min()) pd=(pd-pd.min())/(pd.max()-pd.min()) mask=plt.imread(fnameMask).astype(np.float64) fixed=t1 moving=t2 maskMoving=mask>0 maskFixed=mask>0 fixed*=mask moving*=mask plt.figure() plt.subplot(1,4,1) plt.imshow(t1, cmap=plt.cm.gray) plt.title('Input T1') plt.subplot(1,4,2) plt.imshow(t2, cmap=plt.cm.gray) plt.title('Input T2') plt.subplot(1,4,3) plt.imshow(pd, cmap=plt.cm.gray) plt.title('Input PD') plt.subplot(1,4,4) plt.imshow(mask, cmap=plt.cm.gray) plt.title('Input Mask') #------------------------- warpedFixed=rcommon.warpImage(fixed,GT) print 'Registering T2 (template) to deformed T1 (template)...' level=3 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(warpedFixed, level, maskFixed)] plt.figure() plt.subplot(1,2,1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1,2,2) plt.imshow(warpedFixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] displacement, inverse=estimateMultimodalDiffeomorphicField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) residual=tf.compose_vector_fields(displacement, inverse) warpPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level+1)] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) displacement[...,0]*=(maskFixed) displacement[...,1]*=(maskFixed) #----plot deformations--- rcommon.plotDiffeomorphism(GT, GTinv, GTres, 7) rcommon.plotDiffeomorphism(displacement, inverse, residual, 7) #----statistics--- nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) nrm*=maskFixed maxNorm=np.max(nrm) residual=((displacement-GT))**2 meanDisplacementError=np.sqrt(residual.sum(2)*(maskFixed)).mean() stdevDisplacementError=np.sqrt(residual.sum(2)*(maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError,'(',stdevDisplacementError,')'
def estimateNewMultimodalDiffeomorphicField2D(moving, fixed, lambdaDisplacement, quantizationLevels, maxOuterIter, previousDisplacement, previousDisplacementInverse): innerTolerance=1e-4 outerTolerance=1e-3 sh=moving.shape X0,X1=np.mgrid[0:sh[0], 0:sh[1]] displacement =np.empty(shape=(moving.shape)+(2,), dtype=np.float64) residuals=np.zeros(shape=(moving.shape), dtype=np.float64) gradientField =np.empty(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacement=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacementInverse=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) if(previousDisplacement!=None): totalDisplacement[...]=previousDisplacement totalDisplacementInverse[...]=previousDisplacementInverse fixedQ=None grayLevels=None fixedQ, grayLevels, hist=tf.quantizePositiveImageCYTHON(fixed, quantizationLevels) fixedQ=np.array(fixedQ, dtype=np.int32) finished=False outerIter=0 maxDisplacement=None maxVariation=None maxResidual=0 while((not finished) and (outerIter<maxOuterIter)): outerIter+=1 #---E step--- warped=ndimage.map_coordinates(moving, [X0+totalDisplacement[...,0], X1+totalDisplacement[...,1]], prefilter=True) movingMask=((moving>0)*1.0)*((fixed>0)*1.0) warpedMovingMask=ndimage.map_coordinates(movingMask, [X0+totalDisplacement[...,0], X1+totalDisplacement[...,1]], order=0, prefilter=False) warpedMovingMask=warpedMovingMask.astype(np.int32) means, variances=tf.computeMaskedImageClassStatsCYTHON(warpedMovingMask, warped, quantizationLevels, fixedQ) means[0]=0 means=np.array(means) variances=np.array(variances) sigmaField=variances[fixedQ] deltaField=means[fixedQ]-warped#########Delta-field using Arce's rule #--M step-- g0, g1=sp.gradient(warped) gradientField[:,:,0]=g0 gradientField[:,:,1]=g1 maxVariation=1+innerTolerance innerIter=0 maxInnerIter=1000 displacement[...]=0 while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)): innerIter+=1 maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, gradientField, lambdaDisplacement, totalDisplacement, displacement, residuals) opt=np.max(residuals) if(maxResidual<opt): maxResidual=opt #--accumulate displacement-- expd, invexpd=tf.vector_field_exponential(displacement) totalDisplacement=tf.compose_vector_fields(expd, totalDisplacement) totalDisplacementInverse=tf.compose_vector_fields(totalDisplacementInverse, invexpd) #--check stop condition-- nrm=np.sqrt(displacement[...,0]**2+displacement[...,1]**2) #maxDisplacement=np.max(nrm) maxDisplacement=np.mean(nrm) if((maxDisplacement<outerTolerance)or(outerIter>=maxOuterIter)): finished=True # plt.figure() # plt.subplot(1,3,1) # plt.imshow(means[fixedQ],cmap=plt.cm.gray) # plt.title("Estimated warped modality") # plt.subplot(1,3,2) # plt.imshow(fixedQ,cmap=plt.cm.gray) # plt.title("Quantized") # plt.subplot(1,3,3) # plt.plot(means) # plt.title("Means") print "Iter: ",outerIter, "Mean displacement:", maxDisplacement, "Max variation:",maxVariation, "Max residual:", maxResidual if(previousDisplacement!=None): return totalDisplacement-previousDisplacement, totalDisplacementInverse return totalDisplacement, totalDisplacementInverse