def checkerA12inE8(l,basis,orderList): print("Checking if conjugate to any of the complete ones:") print(checker(l,basis,orderList)) #These are two two cases where we do not know lambda5: cases 28 and 29 l28=[(4,), (4,), (0,), (0,)] l29=[(5,), (5,)] L28=[] L28=L28+concat([(0,)],wedge2(l28)) L28=L28+[(2,0)] L29=[] L29=L29+concat([(0,)],wedge2(l29)) L29=L29+[(2,0)] basisTemp=[[(0)]] basisTemp.append(l) print("Conjugate to case 28?") print(classifyIncomplete(L28,basisTemp,orderList2)) if len(classifyIncomplete(L28,basisTemp,orderList2))>1: print("YES") print("Conjugate to case 29?") print(classifyIncomplete(L29,basisTemp,orderList2)) if len(classifyIncomplete(L29,basisTemp,orderList2))>1: print("YES")
#Check lambda5?? lambda1.append([(8,), (0,), (0,), (0,)]) lambda5.append(expand("[(10,)^2/(4,)^2]")) #What is lambda5?? lambda1.append([(4,), (4,), (0,), (0,)]) lambda5.append(expand("[(6,)^2/(4,)^2/(2,)^2/(0,)^2]")) #What is the spin here? lambda1.append([(5,), (5,)]) lambda5.append(expand("[(8,)^2/(4,)^2/(0,)^4]")) for i in range(1,len(lambda1)): lambda2.append(wedge2(lambda1[i])) #print(dimChecker(lambda2[i])) orderList2=order(2) L=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] for i in range(1,len(lambda1)): L[i]=[] L[i]=L[i]+concat([(0,)],lambda2[i]) L[i]=L[i]+[(2,0)] L[i]=L[i]+concat([(1,)],lambda5[i]) x=checker(L[i],basisA12,orderList2) # print("///////////////////////////////") # print(i) # print(x) basisA12.append(L[i])
lambda1.append([(4,), (4,), (0,), (0,)]) lambda5.append(expand("[(6,)^2/(4,)^2/(2,)^2/(0,)^2]")) lambda4.append(expand("[(6,)^2/(4,)^2/(2,)^2/(0,)^2]")) #What is the spin here? lambda1.append([(5,), (5,)]) lambda5.append(expand("[(8,)^2/(4,)^2/(0,)^4]")) lambda4.append(expand("[(5,)^3/(9,)/(3,)]")) #What is the spin here? lambda1.append([(5,), (5,)]) lambda5.append(expand("[(5,)^3/(9,)/(3,)]")) lambda4.append(expand("[(8,)^2/(4,)^2/(0,)^4]")) for i in range(1,len(lambda1)): lambda2.append(wedge2(lambda1[i])) #print(dimChecker(lambda2[i])) orderList3=order(3) basisA13=[[0]] basisA13Lambda1=[[0]] for i in range(1,38): print("case i") LE8[i]=[] LE8[i]=concat([(1,1)],lambda1[i]) LE8[i]=LE8[i]+concat([(1,0)],lambda4[i]) LE8[i]=LE8[i]+[(2,0,0),(0,2,0)] LE8[i]=LE8[i]+concat([(0,0)],lambda2[i])
e=[0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0] d[1]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,0,1,1)/(0,0,0,0,0,0)^4]") d[2]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,0,1,1)^2]") d[3]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,0,1,1)/(1,0,1,0,0,0)]") d[4]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,0,1,1)/(0,0,0,0,0,1)^2]") d[5]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,1,1,0)/(0,0,0,0,0,1)^2]") d[6]=expand("[(1,1,0,0,0,0)/(0,0,1,1,0,0)/(0,0,0,0,1,0)^2/(0,0,0,0,0,1)^2]") d[7]=expand("[(1,0,0,0,0,0)^2/(0,1,1,0,0,0)/(0,0,0,1,1,0)/(0,0,0,0,0,2)/(0,0,0,0,0,0)]") d[8]=expand("[(1,1,0,0,0,0)/(0,1,1,0,0,0)/(0,0,0,1,1,0)/(0,0,0,0,0,2)/(0,0,0,0,0,0)]") d[9]=expand("[(1,0,0,0,0,1)/(0,1,1,0,0,0)/(0,0,0,1,1,0)/(0,0,0,0,0,2)/(0,0,0,0,0,0)]") for i in range(1,10): sol[i]= wedge2(d[i]) #Original : e[2]=expand("[(1,0,1,0,1,0,0,1)/(1,0,1,0,0,1,1,0)/(1,0,0,1,1,0,1,0)/(1,0,0,1,0,1,0,1)/(0,1,1,0,1,0,0,1)/(0,1,1,0,0,1,1,0)/(0,1,0,1,1,0,1,0)/(0,1,0,1,0,1,0,1)/()]") e[1]=expand("[(1,0,1,0,1,0)^2/(1,0,1,0,0,1)^2/(1,0,0,1,1,0)^2/(1,0,0,1,0,1)^2/(0,1,1,0,1,0)^2/(0,1,1,0,0,1)^2/(0,1,0,1,1,0)^2/(0,1,0,1,0,1)^2]") e[2]=expand("[(1,0,1,0,1,1)/(1,0,1,0,1,1)/(1,0,0,1,2,0)/(1,0,0,1,0,0)/(1,0,0,1,0,2)/(1,0,0,1,0,0)/(0,1,1,0,1,1)/(0,1,1,0,1,1)/(0,1,0,1,2,0)/(0,1,0,1,0,0)/(0,1,0,1,0,2)/(0,1,0,1,0,0)]") e[3]=expand("[(1,0,2,0,1,0)/(1,0,0,0,1,0)/(2,0,1,0,0,1)/(0,0,1,0,0,1)/(2,0,0,1,1,0)/(0,0,0,1,1,0)/(1,0,1,1,0,1)/(0,1,2,0,1,0)/(0,1,0,0,1,0)/(1,1,1,0,0,1)/(1,1,0,1,1,0)/(0,1,1,1,0,1)]") #e[4]=expand("[()/()/()/()/()/()/()/()]")
from compare import classifyIncomplete #from compare import classifyIncomplete2 from compare import classify from compare import perm from tensor_wedge import concat from remove_tensor_A1 import removeFirstA1 from remove_tensor_A1 import removeA1 from remove_tensor_A1 import diagA1 from tensor_wedge import printLE8 from tensor_wedge import tensor print("A_1^4 in D5") a=[(1,1,0,0),(0,0,1,1),(0,0,0,0),(0,0,0,0)] b=[(1,1,0,0),(0,0,2,0),(0,0,0,2),(0,0,0,0)] print(latex(wedge2(a))) print(latex(wedge2(b))) print("A_1^3 in D5") lam=[0] lam.append(expand("[(1,1,0)/(0,1,1)/(0,0,0)^2]")) lam.append(expand("[(1,1,0)/(0,0,1)^2/(0,0,0)^2]")) lam.append(expand("[(1,1,0)/(0,0,2)/(0,0,0)^3]")) lam.append(expand("[(1,1,0)/(0,0,2)^2]")) lam.append(expand("[(1,1,0)/(2,0,0)/(0,0,2)]")) lam.append(expand("[(1,1,0)/(0,0,4)/(0,0,0)]")) lam.append(expand("[(1,0,0)^2/(0,2,0)/(0,0,2)]")) lam.append(expand("[(2,0,0)/(0,2,0)/(0,0,2)/(0,0,0)]")) print(len(lam))