コード例 #1
0
    def index_impl(self, experiment=None):
        """Return {runName: {tagName: {displayName: ..., description: ...}}}."""
        if self._data_provider:
            mapping = self._data_provider.list_scalars(
                experiment_id=experiment,
                plugin_name=metadata.PLUGIN_NAME,
            )
            result = {run: {} for run in mapping}
            for (run, tag_to_content) in six.iteritems(mapping):
                for (tag, metadatum) in six.iteritems(tag_to_content):
                    description = plugin_util.markdown_to_safe_html(
                        metadatum.description)
                    result[run][tag] = {
                        'displayName': metadatum.display_name,
                        'description': description,
                    }
            return result

        if self._db_connection_provider:
            # Read tags from the database.
            db = self._db_connection_provider()
            cursor = db.execute(
                '''
        SELECT
          Tags.tag_name,
          Tags.display_name,
          Runs.run_name
        FROM Tags
        JOIN Runs
          ON Tags.run_id = Runs.run_id
        WHERE
          Tags.plugin_name = ?
      ''', (metadata.PLUGIN_NAME, ))
            result = collections.defaultdict(dict)
            for row in cursor:
                tag_name, display_name, run_name = row
                result[run_name][tag_name] = {
                    'displayName': display_name,
                    # TODO(chihuahua): Populate the description. Currently, the tags
                    # table does not link with the description table.
                    'description': '',
                }
            return result

        result = collections.defaultdict(lambda: {})
        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME)
        for (run, tag_to_content) in six.iteritems(mapping):
            for (tag, content) in six.iteritems(tag_to_content):
                content = metadata.parse_plugin_metadata(content)
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                result[run][tag] = {
                    'displayName':
                    summary_metadata.display_name,
                    'description':
                    plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description)
                }

        return result
コード例 #2
0
    def _index_impl(self):
        if self._db_connection_provider:
            db = self._db_connection_provider()
            cursor = db.execute(
                """
                SELECT
                  Runs.run_name,
                  Tags.tag_name,
                  Tags.display_name,
                  Descriptions.description,
                  /* Subtract 2 for leading width and height elements. */
                  MAX(CAST (Tensors.shape AS INT)) - 2 AS samples
                FROM Tags
                JOIN Runs USING (run_id)
                JOIN Tensors ON Tags.tag_id = Tensors.series
                LEFT JOIN Descriptions ON Tags.tag_id = Descriptions.id
                WHERE Tags.plugin_name = :plugin
                  /* Shape should correspond to a rank-1 tensor. */
                  AND NOT INSTR(Tensors.shape, ',')
                  /* Required to use TensorSeriesStepIndex. */
                  AND Tensors.step IS NOT NULL
                GROUP BY Tags.tag_id
                HAVING samples >= 1
                """,
                {"plugin": metadata.PLUGIN_NAME},
            )
            result = collections.defaultdict(dict)
            for row in cursor:
                run_name, tag_name, display_name, description, samples = row
                description = description or ""  # Handle missing descriptions.
                result[run_name][tag_name] = {
                    "displayName": display_name,
                    "description":
                    plugin_util.markdown_to_safe_html(description),
                    "samples": samples,
                }
            return result

        runs = self._multiplexer.Runs()
        result = {run: {} for run in runs}
        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME)
        for (run, tag_to_content) in six.iteritems(mapping):
            for tag in tag_to_content:
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                tensor_events = self._multiplexer.Tensors(run, tag)
                samples = max([
                    len(event.tensor_proto.string_val[2:])  # width, height
                    for event in tensor_events
                ] + [0])
                result[run][tag] = {
                    "displayName":
                    summary_metadata.display_name,
                    "description":
                    plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description),
                    "samples":
                    samples,
                }
        return result
コード例 #3
0
def text_array_to_html(text_arr):
    """Take a numpy.ndarray containing strings, and convert it into html.

    If the ndarray contains a single scalar string, that string is converted to
    html via our sanitized markdown parser. If it contains an array of strings,
    the strings are individually converted to html and then composed into a table
    using make_table. If the array contains dimensionality greater than 2,
    all but two of the dimensions are removed, and a warning message is prefixed
    to the table.

    Args:
      text_arr: A numpy.ndarray containing strings.

    Returns:
      The array converted to html.
    """
    if not text_arr.shape:
        # It is a scalar. No need to put it in a table, just apply markdown
        return plugin_util.markdown_to_safe_html(text_arr.item())
    warning = ""
    if len(text_arr.shape) > 2:
        warning = plugin_util.markdown_to_safe_html(WARNING_TEMPLATE %
                                                    len(text_arr.shape))
        text_arr = reduce_to_2d(text_arr)
    table = plugin_util.markdowns_to_safe_html(
        text_arr.reshape(-1),
        lambda xs: make_table(np.array(xs).reshape(text_arr.shape)),
    )
    return warning + table
コード例 #4
0
def text_array_to_html(text_arr):
  """Take a numpy.ndarray containing strings, and convert it into html.

  If the ndarray contains a single scalar string, that string is converted to
  html via our sanitized markdown parser. If it contains an array of strings,
  the strings are individually converted to html and then composed into a table
  using make_table. If the array contains dimensionality greater than 2,
  all but two of the dimensions are removed, and a warning message is prefixed
  to the table.

  Args:
    text_arr: A numpy.ndarray containing strings.

  Returns:
    The array converted to html.
  """
  if not text_arr.shape:
    # It is a scalar. No need to put it in a table, just apply markdown
    return plugin_util.markdown_to_safe_html(np.asscalar(text_arr))
  warning = ''
  if len(text_arr.shape) > 2:
    warning = plugin_util.markdown_to_safe_html(WARNING_TEMPLATE
                                                % len(text_arr.shape))
    text_arr = reduce_to_2d(text_arr)

  html_arr = [plugin_util.markdown_to_safe_html(x)
              for x in text_arr.reshape(-1)]
  html_arr = np.array(html_arr).reshape(text_arr.shape)

  return warning + make_table(html_arr)
コード例 #5
0
    def index_impl(self, experiment=None):
        """Return {runName: {tagName: {displayName: ..., description:
        ...}}}."""
        if self._data_provider:
            mapping = self._data_provider.list_scalars(
                experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME,
            )
            result = {run: {} for run in mapping}
            for (run, tag_to_content) in six.iteritems(mapping):
                for (tag, metadatum) in six.iteritems(tag_to_content):
                    description = plugin_util.markdown_to_safe_html(
                        metadatum.description
                    )
                    result[run][tag] = {
                        "displayName": metadatum.display_name,
                        "description": description,
                    }
            return result

        result = collections.defaultdict(lambda: {})
        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME
        )
        for (run, tag_to_content) in six.iteritems(mapping):
            for (tag, content) in six.iteritems(tag_to_content):
                content = metadata.parse_plugin_metadata(content)
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                result[run][tag] = {
                    "displayName": summary_metadata.display_name,
                    "description": plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description
                    ),
                }

        return result
コード例 #6
0
ファイル: images_plugin.py プロジェクト: whqkdhfh13/sswp
  def _index_impl(self):
    if self._db_connection_provider:
      db = self._db_connection_provider()
      cursor = db.execute(
          '''
          SELECT
            Runs.run_name,
            Tags.tag_name,
            Tags.display_name,
            Descriptions.description,
            /* Subtract 2 for leading width and height elements. */
            MAX(CAST (Tensors.shape AS INT)) - 2 AS samples
          FROM Tags
          JOIN Runs USING (run_id)
          JOIN Tensors ON Tags.tag_id = Tensors.series
          LEFT JOIN Descriptions ON Tags.tag_id = Descriptions.id
          WHERE Tags.plugin_name = :plugin
            /* Shape should correspond to a rank-1 tensor. */
            AND NOT INSTR(Tensors.shape, ',')
            /* Required to use TensorSeriesStepIndex. */
            AND Tensors.step IS NOT NULL
          GROUP BY Tags.tag_id
          HAVING samples >= 1
          ''',
          {'plugin': metadata.PLUGIN_NAME})
      result = collections.defaultdict(dict)
      for row in cursor:
        run_name, tag_name, display_name, description, samples = row
        description = description or ''  # Handle missing descriptions.
        result[run_name][tag_name] = {
            'displayName': display_name,
            'description': plugin_util.markdown_to_safe_html(description),
            'samples': samples
        }
      return result

    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}
    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for tag in tag_to_content:
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        tensor_events = self._multiplexer.Tensors(run, tag)
        samples = max([len(event.tensor_proto.string_val[2:])  # width, height
                       for event in tensor_events] + [0])
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description),
                            'samples': samples}
    return result
コード例 #7
0
    def _index_impl(self):
        runs = self._multiplexer.Runs()
        result = {run: {} for run in runs}

        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME)
        for (run, tag_to_content) in six.iteritems(mapping):
            for tag in tag_to_content:
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                tensor_events = self._multiplexer.Tensors(run, tag)
                samples = max([
                    len(event.tensor_proto.string_val[2:])  # width, height
                    for event in tensor_events
                ] + [0])
                result[run][tag] = {
                    'displayName':
                    summary_metadata.display_name,
                    'description':
                    plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description),
                    'samples':
                    samples
                }

        return result
コード例 #8
0
  def _audio_response_for_run(self, tensor_events, run, tag, sample):
    """Builds a JSON-serializable object with information about audio.

    Args:
      tensor_events: A list of image event_accumulator.TensorEvent objects.
      run: The name of the run.
      tag: The name of the tag the audio entries all belong to.
      sample: The zero-indexed sample of the audio sample for which to
      retrieve information. For instance, setting `sample` to `2` will
        fetch information about only the third audio clip of each batch,
        and steps with fewer than three audio clips will be omitted from
        the results.

    Returns:
      A list of dictionaries containing the wall time, step, URL, width, and
      height for each audio entry.
    """
    response = []
    index = 0
    filtered_events = self._filter_by_sample(tensor_events, sample)
    content_type = self._get_mime_type(run, tag)
    for (index, tensor_event) in enumerate(filtered_events):
      data = tensor_util.make_ndarray(tensor_event.tensor_proto)
      label = data[sample, 1]
      response.append({
          'wall_time': tensor_event.wall_time,
          'step': tensor_event.step,
          'label': plugin_util.markdown_to_safe_html(label),
          'contentType': content_type,
          'query': self._query_for_individual_audio(run, tag, sample, index)
      })
    return response
コード例 #9
0
def _get_tag_to_description(mapping):
    """Returns a map of tags to descriptions.

    Args:
        mapping: a nested map `d` such that `d[run][tag]` is a time series
          produced by DataProvider's `list_*` methods.

    Returns:
        A map from tag strings to description HTML strings. E.g.
        {
            "loss": "<h1>Multiple descriptions</h1><h2>For runs: test, train
            </h2><p>...</p>",
            "loss2": "<p>The lossy details</p>",
        }
    """
    tag_to_descriptions, description_to_runs = _get_tag_description_info(
        mapping)

    result = {}
    for tag in tag_to_descriptions:
        descriptions = sorted(tag_to_descriptions[tag])
        if len(descriptions) == 1:
            description = descriptions[0]
        else:
            description = _build_combined_description(descriptions,
                                                      description_to_runs)
        result[tag] = plugin_util.markdown_to_safe_html(description)

    return result
コード例 #10
0
ファイル: audio_plugin.py プロジェクト: jlewi/tensorboard
  def _audio_response_for_run(self, tensor_events, run, tag, sample):
    """Builds a JSON-serializable object with information about audio.

    Args:
      tensor_events: A list of image event_accumulator.TensorEvent objects.
      run: The name of the run.
      tag: The name of the tag the audio entries all belong to.
      sample: The zero-indexed sample of the audio sample for which to
      retrieve information. For instance, setting `sample` to `2` will
        fetch information about only the third audio clip of each batch,
        and steps with fewer than three audio clips will be omitted from
        the results.

    Returns:
      A list of dictionaries containing the wall time, step, URL, width, and
      height for each audio entry.
    """
    response = []
    index = 0
    filtered_events = self._filter_by_sample(tensor_events, sample)
    content_type = self._get_mime_type(run, tag)
    for (index, tensor_event) in enumerate(filtered_events):
      data = tf.make_ndarray(tensor_event.tensor_proto)
      label = data[sample, 1]
      response.append({
          'wall_time': tensor_event.wall_time,
          'step': tensor_event.step,
          'label': plugin_util.markdown_to_safe_html(label),
          'contentType': content_type,
          'query': self._query_for_individual_audio(run, tag, sample, index)
      })
    return response
コード例 #11
0
ファイル: text_plugin_test.py プロジェクト: jlewi/tensorboard
  def test_text_array_to_html(self):

    convert = text_plugin.text_array_to_html
    scalar = np.array('foo')
    scalar_expected = '<p>foo</p>'
    self.assertEqual(convert(scalar), scalar_expected)

    vector = np.array(['foo', 'bar'])
    vector_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      </tr>
      <tr>
      <td><p>bar</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(vector), vector_expected)

    d2 = np.array([['foo', 'bar'], ['zoink', 'zod']])
    d2_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(d2), d2_expected)

    d3 = np.array([[['foo', 'bar'], ['zoink', 'zod']], [['FOO', 'BAR'],
                                                        ['ZOINK', 'ZOD']]])

    warning = plugin_util.markdown_to_safe_html(
        text_plugin.WARNING_TEMPLATE % 3)
    d3_expected = warning + textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(d3), d3_expected)
コード例 #12
0
    def test_text_array_to_html(self):

        convert = text_plugin.text_array_to_html
        scalar = np.array('foo')
        scalar_expected = '<p>foo</p>'
        self.assertEqual(convert(scalar), scalar_expected)

        vector = np.array(['foo', 'bar'])
        vector_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      </tr>
      <tr>
      <td><p>bar</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(vector), vector_expected)

        d2 = np.array([['foo', 'bar'], ['zoink', 'zod']])
        d2_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(d2), d2_expected)

        d3 = np.array([[['foo', 'bar'], ['zoink', 'zod']],
                       [['FOO', 'BAR'], ['ZOINK', 'ZOD']]])

        warning = plugin_util.markdown_to_safe_html(
            text_plugin.WARNING_TEMPLATE % 3)
        d3_expected = warning + textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(d3), d3_expected)
コード例 #13
0
    def _index_impl(self, experiment):
        if self._data_provider:
            mapping = self._data_provider.list_blob_sequences(
                experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME,
            )
            result = {run: {} for run in mapping}
            for (run, tag_to_content) in six.iteritems(mapping):
                for (tag, metadatum) in six.iteritems(tag_to_content):
                    description = plugin_util.markdown_to_safe_html(
                        metadatum.description
                    )
                    result[run][tag] = {
                        "displayName": metadatum.display_name,
                        "description": description,
                        "samples": metadatum.max_length - 2,  # width, height
                    }
            return result

        runs = self._multiplexer.Runs()
        result = {run: {} for run in runs}
        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME
        )
        for (run, tag_to_content) in six.iteritems(mapping):
            for tag in tag_to_content:
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                tensor_events = self._multiplexer.Tensors(run, tag)
                samples = max(
                    [
                        len(event.tensor_proto.string_val[2:])  # width, height
                        for event in tensor_events
                    ]
                    + [0]
                )
                result[run][tag] = {
                    "displayName": summary_metadata.display_name,
                    "description": plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description
                    ),
                    "samples": samples,
                }
        return result
コード例 #14
0
    def tags_impl(self):
        """Creates the JSON object for the tags route response.

        Returns:
          The JSON object for the tags route response.
        """
        if self._db_connection_provider:
            # Read tags from the database.
            db = self._db_connection_provider()
            cursor = db.execute(
                """
        SELECT
          Tags.tag_name,
          Tags.display_name,
          Runs.run_name
        FROM Tags
        JOIN Runs
          ON Tags.run_id = Runs.run_id
        WHERE
          Tags.plugin_name = ?
      """,
                (metadata.PLUGIN_NAME,),
            )
            result = {}
            for (tag_name, display_name, run_name) in cursor:
                if run_name not in result:
                    result[run_name] = {}
                result[run_name][tag_name] = {
                    "displayName": display_name,
                    # TODO(chihuahua): Populate the description. Currently, the tags
                    # table does not link with the description table.
                    "description": "",
                }
        else:
            # Read tags from events files.
            runs = self._multiplexer.Runs()
            result = {run: {} for run in runs}

            mapping = self._multiplexer.PluginRunToTagToContent(
                metadata.PLUGIN_NAME
            )
            for (run, tag_to_content) in six.iteritems(mapping):
                for (tag, _) in six.iteritems(tag_to_content):
                    summary_metadata = self._multiplexer.SummaryMetadata(
                        run, tag
                    )
                    result[run][tag] = {
                        "displayName": summary_metadata.display_name,
                        "description": plugin_util.markdown_to_safe_html(
                            summary_metadata.summary_description
                        ),
                    }

        return result
コード例 #15
0
def text_array_to_html(text_arr, enable_markdown):
    """Take a numpy.ndarray containing strings, and convert it into html.

    If the ndarray contains a single scalar string, that string is converted to
    html via our sanitized markdown parser. If it contains an array of strings,
    the strings are individually converted to html and then composed into a table
    using make_table. If the array contains dimensionality greater than 2,
    all but two of the dimensions are removed, and a warning message is prefixed
    to the table.

    Args:
      text_arr: A numpy.ndarray containing strings.
      enable_markdown: boolean, whether to enable Markdown

    Returns:
      The array converted to html.
    """
    if not text_arr.shape:
        # It is a scalar. No need to put it in a table.
        if enable_markdown:
            return plugin_util.markdown_to_safe_html(text_arr.item())
        else:
            return plugin_util.safe_html(text_arr.item())
    warning = ""
    if len(text_arr.shape) > 2:
        warning = plugin_util.markdown_to_safe_html(WARNING_TEMPLATE %
                                                    len(text_arr.shape))
        text_arr = reduce_to_2d(text_arr)
    if enable_markdown:
        table = plugin_util.markdowns_to_safe_html(
            text_arr.reshape(-1),
            lambda xs: make_table(np.array(xs).reshape(text_arr.shape)),
        )
    else:
        # Convert utf-8 bytes to str. The built-in np.char.decode doesn't work on
        # object arrays, and converting to an numpy chararray is lossy.
        decode = lambda bs: bs.decode("utf-8") if isinstance(bs, bytes) else bs
        text_arr_str = np.array([decode(bs) for bs in text_arr.reshape(-1)
                                 ]).reshape(text_arr.shape)
        table = plugin_util.safe_html(make_table(text_arr_str))
    return warning + table
コード例 #16
0
    def _index_impl(self):
        """Return information about the tags in each run.

        Result is a dictionary of the form

            {
              "runName1": {
                "tagName1": {
                  "displayName": "The first tag",
                  "description": "<p>Long ago there was just one tag...</p>",
                  "samples": 3
                },
                "tagName2": ...,
                ...
              },
              "runName2": ...,
              ...
            }

        For each tag, `samples` is the greatest number of audio clips that
        appear at any particular step. (It's not related to "samples of a
        waveform.") For example, if for tag `minibatch_input` there are
        five audio clips at step 0 and ten audio clips at step 1, then the
        dictionary for `"minibatch_input"` will contain `"samples": 10`.
        """
        runs = self._multiplexer.Runs()
        result = {run: {} for run in runs}

        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME
        )
        for (run, tag_to_content) in six.iteritems(mapping):
            for tag in tag_to_content:
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                tensor_events = self._multiplexer.Tensors(run, tag)
                samples = max(
                    [
                        self._number_of_samples(event.tensor_proto)
                        for event in tensor_events
                    ]
                    + [0]
                )
                result[run][tag] = {
                    "displayName": summary_metadata.display_name,
                    "description": plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description
                    ),
                    "samples": samples,
                }

        return result
コード例 #17
0
  def index_impl(self):
    """Return {runName: {tagName: {displayName: ..., description: ...}}}."""
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for (tag, content) in six.iteritems(tag_to_content):
        content = metadata.parse_plugin_metadata(content)
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description)}

    return result
コード例 #18
0
  def index_impl(self):
    """Return {runName: {tagName: {displayName: ..., description: ...}}}."""
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for (tag, content) in six.iteritems(tag_to_content):
        content = metadata.parse_summary_metadata(content)
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description)}

    return result
コード例 #19
0
    def _index_impl(self):
        """Return information about the tags in each run.

    Result is a dictionary of the form

        {
          "runName1": {
            "tagName1": {
              "displayName": "The first tag",
              "description": "<p>Long ago there was just one tag...</p>",
              "samples": 3
            },
            "tagName2": ...,
          },
          "runName2": ...,
        }

    For each tag, `samples` is the greatest number of images that appear
    at any particular step. For example, if for tag `input_reshaped`
    there are 5 samples at step 0 and 10 samples at step 1, then the
    dictionary for `"input_reshaped"` will contain `"samples": 10`.
    """
        runs = self._multiplexer.Runs()
        result = {run: {} for run in runs}

        mapping = self._multiplexer.PluginRunToTagToContent(
            metadata.PLUGIN_NAME)
        for (run, tag_to_content) in six.iteritems(mapping):
            for tag in tag_to_content:
                summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
                tensor_events = self._multiplexer.Tensors(run, tag)
                samples = max([
                    len(event.tensor_proto.string_val[2:])  # width, height
                    for event in tensor_events
                ] + [0])
                result[run][tag] = {
                    'displayName':
                    summary_metadata.display_name,
                    'description':
                    plugin_util.markdown_to_safe_html(
                        summary_metadata.summary_description),
                    'samples':
                    samples
                }

        return result
コード例 #20
0
ファイル: images_plugin.py プロジェクト: jlewi/tensorboard
  def _index_impl(self):
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for tag in tag_to_content:
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        tensor_events = self._multiplexer.Tensors(run, tag)
        samples = max([len(event.tensor_proto.string_val[2:])  # width, height
                       for event in tensor_events] + [0])
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description),
                            'samples': samples}

    return result
コード例 #21
0
 def _index_impl(self, ctx, experiment):
     mapping = self._data_provider.list_blob_sequences(
         ctx,
         experiment_id=experiment,
         plugin_name=metadata.PLUGIN_NAME,
     )
     result = {run: {} for run in mapping}
     for (run, tag_to_content) in mapping.items():
         for (tag, metadatum) in tag_to_content.items():
             description = plugin_util.markdown_to_safe_html(
                 metadatum.description)
             result[run][tag] = {
                 "displayName": metadatum.display_name,
                 "description": description,
                 "samples": metadatum.max_length - 2,  # width, height
             }
     return result
コード例 #22
0
    def _index_impl(self, ctx, experiment):
        """Return information about the tags in each run.

        Result is a dictionary of the form

            {
              "runName1": {
                "tagName1": {
                  "displayName": "The first tag",
                  "description": "<p>Long ago there was just one tag...</p>",
                  "samples": 3
                },
                "tagName2": ...,
                ...
              },
              "runName2": ...,
              ...
            }

        For each tag, `samples` is the greatest number of audio clips that
        appear at any particular step. (It's not related to "samples of a
        waveform.") For example, if for tag `minibatch_input` there are
        five audio clips at step 0 and ten audio clips at step 1, then the
        dictionary for `"minibatch_input"` will contain `"samples": 10`.
        """
        mapping = self._data_provider.list_blob_sequences(
            ctx,
            experiment_id=experiment,
            plugin_name=metadata.PLUGIN_NAME,
        )
        result = {run: {} for run in mapping}
        for (run, tag_to_time_series) in mapping.items():
            for (tag, time_series) in tag_to_time_series.items():
                md = metadata.parse_plugin_metadata(time_series.plugin_content)
                if not self._version_checker.ok(md.version, run, tag):
                    continue
                description = plugin_util.markdown_to_safe_html(
                    time_series.description
                )
                result[run][tag] = {
                    "displayName": time_series.display_name,
                    "description": description,
                    "samples": time_series.max_length,
                }
        return result
コード例 #23
0
  def tags_impl(self):
    """Creates the JSON object for the tags route response.

    Returns:
      The JSON object for the tags route response.
    """
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for (tag, _) in six.iteritems(tag_to_content):
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description)}

    return result
コード例 #24
0
    def tags_impl(self, ctx, experiment):
        """Creates the JSON object for the tags route response.

        Returns:
          The JSON object for the tags route response.
        """
        mapping = self._data_provider.list_tensors(
            ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME)
        result = {run: {} for run in mapping}
        for (run, tag_to_time_series) in six.iteritems(mapping):
            for (tag, time_series) in tag_to_time_series.items():
                result[run][tag] = {
                    "displayName":
                    time_series.display_name,
                    "description":
                    plugin_util.markdown_to_safe_html(time_series.description),
                }
        return result
コード例 #25
0
 def index_impl(self, ctx, experiment=None):
     """Return {runName: {tagName: {displayName: ..., description:
     ...}}}."""
     mapping = self._data_provider.list_scalars(
         ctx,
         experiment_id=experiment,
         plugin_name=metadata.PLUGIN_NAME,
     )
     result = {run: {} for run in mapping}
     for (run, tag_to_content) in six.iteritems(mapping):
         for (tag, metadatum) in six.iteritems(tag_to_content):
             description = plugin_util.markdown_to_safe_html(
                 metadatum.description)
             result[run][tag] = {
                 "displayName": metadatum.display_name,
                 "description": description,
             }
     return result
コード例 #26
0
ファイル: pr_curves_plugin.py プロジェクト: jlewi/tensorboard
  def tags_impl(self):
    """Creates the JSON object for the tags route response.

    Returns:
      The JSON object for the tags route response.
    """
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for (tag, _) in six.iteritems(tag_to_content):
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description)}

    return result
コード例 #27
0
ファイル: audio_plugin.py プロジェクト: jlewi/tensorboard
  def _index_impl(self):
    """Return information about the tags in each run.

    Result is a dictionary of the form

        {
          "runName1": {
            "tagName1": {
              "displayName": "The first tag",
              "description": "<p>Long ago there was just one tag...</p>",
              "samples": 3
            },
            "tagName2": ...,
            ...
          },
          "runName2": ...,
          ...
        }

    For each tag, `samples` is the greatest number of audio clips that
    appear at any particular step. (It's not related to "samples of a
    waveform.") For example, if for tag `minibatch_input` there are
    five audio clips at step 0 and ten audio clips at step 1, then the
    dictionary for `"minibatch_input"` will contain `"samples": 10`.
    """
    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for tag in tag_to_content:
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        tensor_events = self._multiplexer.Tensors(run, tag)
        samples = max([self._number_of_samples(event.tensor_proto)
                       for event in tensor_events] + [0])
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description),
                            'samples': samples}

    return result
コード例 #28
0
 def index_impl(self, ctx, experiment=None):
     """Return {runName: {tagName: {displayName: ..., description:
     ...}}}."""
     mapping = self._data_provider.list_scalars(
         ctx,
         experiment_id=experiment,
         plugin_name=metadata.PLUGIN_NAME,
     )
     result = {run: {} for run in mapping}
     for (run, tag_to_content) in mapping.items():
         for (tag, metadatum) in tag_to_content.items():
             md = metadata.parse_plugin_metadata(metadatum.plugin_content)
             if not self._version_checker.ok(md.version, run, tag):
                 continue
             description = plugin_util.markdown_to_safe_html(
                 metadatum.description)
             result[run][tag] = {
                 "displayName": metadatum.display_name,
                 "description": description,
             }
     return result
コード例 #29
0
  def index_impl(self):
    """Return {runName: {tagName: {displayName: ..., description: ...}}}."""
    if self._db_connection_provider:
      # Read tags from the database.
      db = self._db_connection_provider()
      cursor = db.execute('''
        SELECT
          Tags.tag_name,
          Tags.display_name,
          Runs.run_name
        FROM Tags
        JOIN Runs
          ON Tags.run_id = Runs.run_id
        WHERE
          Tags.plugin_name = ?
      ''', (metadata.PLUGIN_NAME,))
      result = collections.defaultdict(dict)
      for row in cursor:
        tag_name, display_name, run_name = row
        result[run_name][tag_name] = {
            'displayName': display_name,
            # TODO(chihuahua): Populate the description. Currently, the tags
            # table does not link with the description table.
            'description': '',
        }
      return result

    runs = self._multiplexer.Runs()
    result = {run: {} for run in runs}

    mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
    for (run, tag_to_content) in six.iteritems(mapping):
      for (tag, content) in six.iteritems(tag_to_content):
        content = metadata.parse_plugin_metadata(content)
        summary_metadata = self._multiplexer.SummaryMetadata(run, tag)
        result[run][tag] = {'displayName': summary_metadata.display_name,
                            'description': plugin_util.markdown_to_safe_html(
                                summary_metadata.summary_description)}

    return result
コード例 #30
0
    def tags_impl(self, ctx, experiment):
        """Creates the JSON object for the tags route response.

        Returns:
          The JSON object for the tags route response.
        """
        mapping = self._data_provider.list_tensors(
            ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME)
        result = {run: {} for run in mapping}
        for (run, tag_to_time_series) in mapping.items():
            for (tag, time_series) in tag_to_time_series.items():
                md = metadata.parse_plugin_metadata(time_series.plugin_content)
                if md.version != 0:
                    self._maybe_warn_about_new_metadata(run, tag, md.version)
                    continue
                result[run][tag] = {
                    "displayName":
                    time_series.display_name,
                    "description":
                    plugin_util.markdown_to_safe_html(time_series.description),
                }
        return result
コード例 #31
0
 def index_impl(self, ctx, experiment):
     """Return {runName: {tagName: {displayName: ..., description:
     ...}}}."""
     mapping = self._data_provider.list_tensors(
         ctx,
         experiment_id=experiment,
         plugin_name=metadata.PLUGIN_NAME,
     )
     result = {run: {} for run in mapping}
     for (run, tag_to_content) in mapping.items():
         for (tag, metadatum) in tag_to_content.items():
             description = plugin_util.markdown_to_safe_html(
                 metadatum.description)
             md = metadata.parse_plugin_metadata(metadatum.plugin_content)
             if md.version != 0:
                 self._maybe_warn_about_new_metadata(run, tag, md.version)
                 continue
             result[run][tag] = {
                 "displayName": metadatum.display_name,
                 "description": description,
             }
     return result
コード例 #32
0
ファイル: text_plugin_test.py プロジェクト: wjfz/tensorboard
    def test_text_array_to_html(self):
        convert = text_plugin.text_array_to_html
        scalar = np.array("foo")
        scalar_expected = "<p>foo</p>"
        self.assertEqual(convert(scalar), scalar_expected)

        # Check that underscores are preserved correctly; this detects erroneous
        # use of UTF-16 or UTF-32 encoding when calling markdown_to_safe_html(),
        # which would introduce spurious null bytes and cause undesired <em> tags
        # around the underscores.
        scalar_underscores = np.array("word_with_underscores")
        scalar_underscores_expected = "<p>word_with_underscores</p>"
        self.assertEqual(convert(scalar_underscores),
                         scalar_underscores_expected)

        vector = np.array(["foo", "bar"])
        vector_expected = textwrap.dedent("""\
            <table>
            <tbody>
            <tr>
            <td><p>foo</p></td>
            </tr>
            <tr>
            <td><p>bar</p></td>
            </tr>
            </tbody>
            </table>
            """.rstrip())
        self.assertEqual(convert(vector), vector_expected)

        d2 = np.array([["foo", "bar"], ["zoink", "zod"]])
        d2_expected = textwrap.dedent("""\
            <table>
            <tbody>
            <tr>
            <td><p>foo</p></td>
            <td><p>bar</p></td>
            </tr>
            <tr>
            <td><p>zoink</p></td>
            <td><p>zod</p></td>
            </tr>
            </tbody>
            </table>
            """.rstrip())
        self.assertEqual(convert(d2), d2_expected)

        d3 = np.array([
            [["foo", "bar"], ["zoink", "zod"]],
            [["FOO", "BAR"], ["ZOINK", "ZOD"]],
        ])

        warning = plugin_util.markdown_to_safe_html(
            text_plugin.WARNING_TEMPLATE % 3)
        d3_expected = warning + textwrap.dedent("""\
            <table>
            <tbody>
            <tr>
            <td><p>foo</p></td>
            <td><p>bar</p></td>
            </tr>
            <tr>
            <td><p>zoink</p></td>
            <td><p>zod</p></td>
            </tr>
            </tbody>
            </table>
            """.rstrip())
        self.assertEqual(convert(d3), d3_expected)
コード例 #33
0
  def test_text_array_to_html(self):
    convert = text_plugin.text_array_to_html
    scalar = np.array('foo')
    scalar_expected = '<p>foo</p>'
    self.assertEqual(convert(scalar), scalar_expected)

    # Check that underscores are preserved correctly; this detects erroneous
    # use of UTF-16 or UTF-32 encoding when calling markdown_to_safe_html(),
    # which would introduce spurious null bytes and cause undesired <em> tags
    # around the underscores.
    scalar_underscores = np.array('word_with_underscores')
    scalar_underscores_expected = '<p>word_with_underscores</p>'
    self.assertEqual(convert(scalar_underscores), scalar_underscores_expected)

    vector = np.array(['foo', 'bar'])
    vector_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      </tr>
      <tr>
      <td><p>bar</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(vector), vector_expected)

    d2 = np.array([['foo', 'bar'], ['zoink', 'zod']])
    d2_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(d2), d2_expected)

    d3 = np.array([[['foo', 'bar'], ['zoink', 'zod']], [['FOO', 'BAR'],
                                                        ['ZOINK', 'ZOD']]])

    warning = plugin_util.markdown_to_safe_html(
        text_plugin.WARNING_TEMPLATE % 3)
    d3_expected = warning + textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
    self.assertEqual(convert(d3), d3_expected)
コード例 #34
0
    def test_text_array_to_html(self):
        convert = text_plugin.text_array_to_html
        scalar = np.array('foo')
        scalar_expected = '<p>foo</p>'
        self.assertEqual(convert(scalar), scalar_expected)

        # Check that underscores are preserved correctly; this detects erroneous
        # use of UTF-16 or UTF-32 encoding when calling markdown_to_safe_html(),
        # which would introduce spurious null bytes and cause undesired <em> tags
        # around the underscores.
        scalar_underscores = np.array('word_with_underscores')
        scalar_underscores_expected = '<p>word_with_underscores</p>'
        self.assertEqual(convert(scalar_underscores),
                         scalar_underscores_expected)

        vector = np.array(['foo', 'bar'])
        vector_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      </tr>
      <tr>
      <td><p>bar</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(vector), vector_expected)

        d2 = np.array([['foo', 'bar'], ['zoink', 'zod']])
        d2_expected = textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(d2), d2_expected)

        d3 = np.array([[['foo', 'bar'], ['zoink', 'zod']],
                       [['FOO', 'BAR'], ['ZOINK', 'ZOD']]])

        warning = plugin_util.markdown_to_safe_html(
            text_plugin.WARNING_TEMPLATE % 3)
        d3_expected = warning + textwrap.dedent("""\
      <table>
      <tbody>
      <tr>
      <td><p>foo</p></td>
      <td><p>bar</p></td>
      </tr>
      <tr>
      <td><p>zoink</p></td>
      <td><p>zod</p></td>
      </tr>
      </tbody>
      </table>""")
        self.assertEqual(convert(d3), d3_expected)
コード例 #35
0
 def _test(self, markdown_string, expected):
   actual = plugin_util.markdown_to_safe_html(markdown_string)
   self.assertEqual(expected, actual)
コード例 #36
0
ファイル: plugin_util_test.py プロジェクト: jlewi/tensorboard
 def _test(self, markdown_string, expected):
   actual = plugin_util.markdown_to_safe_html(markdown_string)
   self.assertEqual(expected, actual)