def test_chainer_np(): for tensor in tensors: # regular variable assert isinstance(x2num.makenp(tensor), np.ndarray) # python primitive type assert (isinstance(x2num.makenp(0), np.ndarray)) assert (isinstance(x2num.makenp(0.1), np.ndarray))
def test_scalar(): res = x2num.makenp(1.1) assert isinstance(res, np.ndarray) and res.shape == (1,) res = x2num.makenp(1000000000000000000000) assert isinstance(res, np.ndarray) and res.shape == (1,) res = x2num.makenp(np.float16(1.00000087)) assert isinstance(res, np.ndarray) and res.shape == (1,) res = x2num.makenp(np.float128(1.00008+9)) assert isinstance(res, np.ndarray) and res.shape == (1,) res = x2num.makenp(np.int64(100000000000)) assert isinstance(res, np.ndarray) and res.shape == (1,)
def image(tag, tensor): """Outputs a `Summary` protocol buffer with images. The summary has up to `max_images` summary values containing images. The images are built from `tensor` which must be 3-D with shape `[height, width, channels]` and where `channels` can be: * 1: `tensor` is interpreted as Grayscale. * 3: `tensor` is interpreted as RGB. * 4: `tensor` is interpreted as RGBA. The `name` in the outputted Summary.Value protobufs is generated based on the name, with a suffix depending on the max_outputs setting: * If `max_outputs` is 1, the summary value tag is '*name*/image'. * If `max_outputs` is greater than 1, the summary value tags are generated sequentially as '*name*/image/0', '*name*/image/1', etc. Args: tag: A name for the generated node. Will also serve as a series name in TensorBoard. tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width, channels]` where `channels` is 1, 3, or 4. Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ tag = _clean_tag(tag) tensor = makenp(tensor, 'IMG') tensor = tensor.astype(np.float32) tensor = (tensor * 255).astype(np.uint8) image = make_image(tensor) return Summary(value=[Summary.Value(tag=tag, image=image)])
def test_pytorch_np(): for tensor in tensors: # regular tensor assert isinstance(x2num.makenp(tensor), np.ndarray) # CUDA tensor if torch.cuda.device_count()>0: assert isinstance(x2num.makenp(tensor.cuda()), np.ndarray) # regular variable assert isinstance(x2num.makenp(torch.autograd.variable.Variable(tensor)), np.ndarray) # CUDA variable if torch.cuda.device_count()>0: assert isinstance(x2num.makenp(torch.autograd.variable.Variable(tensor).cuda()), np.ndarray) # python primitive type assert(isinstance(x2num.makenp(0), np.ndarray)) assert(isinstance(x2num.makenp(0.1), np.ndarray))
def test_pytorch_img(): for s in shapes: x = torch.Tensor(np.random.random_sample(s)) assert x2num.makenp(x, 'IMG').shape[2] == 3
def test_chainer_img(): for s in shapes: x = chainer.Variable(np.random.random_sample(s)) assert x2num.makenp(x, 'IMG').shape[2] == 3