コード例 #1
0
    def log_histogram_and_value(self,epoch_d_loss,epoch_g_loss,epoch_d_hard_loss,epoch_d_soft_loss,epoch):
        log_value('d_loss',epoch_d_loss,epoch)
        log_value('g_loss',epoch_g_loss,epoch)
        log_value('d_hard_loss',epoch_d_hard_loss,epoch)
        log_value('d_soft_loss',epoch_d_soft_loss,epoch)

        log_histogram('entity',self.embedding.entity_embedding.weight.data.cpu(),epoch)
        log_histogram('relation',self.embedding.relation_embedding.weight.data.cpu(),epoch)

        head_list = []
        relation_list = []
        tail_list = []
        for triple in self.data.valid_triples_with_reverse:
            head_list.append(triple[0])
            relation_list.append(triple[1])
            tail_list.append(triple[2])

        with torch.no_grad():
            head_list = torch.LongTensor(head_list).cuda()
            relation_list = torch.LongTensor(relation_list).cuda()
            tail_list = torch.LongTensor(tail_list).cuda()

            head_embedding, relation_embedding, tail_embedding = self.embedding.forward(head_list, relation_list, e2=tail_list)
            g_output = self.geneartor.forward(head_embedding,relation_embedding).data

            g_true_loss = torch.mean(self.discriminator.forward(head_embedding,relation_embedding,tail_embedding))
            g_fake_loss = torch.mean(self.discriminator.forward(head_embedding,relation_embedding,g_output))

            log_value('valid_g_true_loss',g_true_loss.cpu(),epoch)
            log_value('valid_g_fake_loss',g_fake_loss.cpu(),epoch)
コード例 #2
0
    def log_histogram_and_value(self, epoch_loss, epoch):
        log_value('loss', epoch_loss, epoch)

        log_histogram('entity', self.model.entity_embedding.weight.data.cpu(),
                      epoch)
        log_histogram('relation',
                      self.model.relation_embedding.weight.data.cpu(), epoch)
コード例 #3
0
ファイル: util.py プロジェクト: kukuruza/MCD_DA
 def flush(self, step):
     ''' Log and start accumnulating again. '''
     for key in self.vals:
         log_value(key, np.array(self.vals[key]).mean(), step=step)
     for key in self.hist:
         bincounts, bin_edges = np.histogram(np.array(self.hist[key]),
                                             bins=24)
         log_histogram(key, (bin_edges, bincounts), step=step)
         #print ('printed hist for key: %s. %d values' % (key, len(self.hist[key])))
     self.vals = {}
     self.hist = {}
コード例 #4
0
ファイル: utils.py プロジェクト: zxlzr/ml-data-parameters
def log_stats(data, name, step):
    """Logs statistics on tensorboard for data tensor.

    Args:
        data (torch.Tensor): torch tensor.
        name (str): name under which stats for the tensor should be logged.
        step (int): step used for logging
    """
    log_value('{}/highest'.format(name), torch.max(data).item(), step=step)
    log_value('{}/lowest'.format(name), torch.min(data).item(), step=step)
    log_value('{}/mean'.format(name), torch.mean(data).item(), step=step)
    log_value('{}/std'.format(name), torch.std(data).item(), step=step)
    log_histogram('{}'.format(name), data.data.cpu().numpy(), step=step)
コード例 #5
0
args = parser.parse_args()

conn = sqlite3.connect(args.pred_db_file)
c = conn.cursor()
c.execute('ATTACH ? AS "attached"', (args.gt_db_file, ))
c.execute(
    'SELECT pr.value, gt.value FROM properties pr INNER JOIN attached.properties gt '
    'WHERE pr.key == "yaw" AND gt.key == "yaw" AND pr.objectid == gt.objectid ORDER BY pr.objectid ASC'
)
entries = c.fetchall()
c.close()

logging.info(
    'Total %d objects in both the open and the ground truth databases.' %
    len(entries))
logging.debug(pformat(entries))

entries = [(-float(x), float(y)) for (x, y) in entries
           ]  # "-" to fix a bug with sign in synthetic data.
pr_yaws, gt_yaws = zip(*entries)

metrics = angle360_l1(np.array(pr_yaws), np.array(gt_yaws))

bincounts, bin_edges = np.histogram(metrics, bins=24)
configure(args.tflog_dir, flush_secs=10)
step = args.epoch * 4168 // 10  # 8396
#print (step)
log_histogram('hist/test/yaw', (bin_edges, bincounts), step=step)
log_value('metrics/test/yaw', metrics.mean() * 10, step=step)
print(metrics.mean() * 10)
コード例 #6
0
			# get epoch loss
			print("--> {} epoch {}".format(mode, id_epoch))

			epoch_loss = train_eval(mode, model, optimizer, dataloader)

			lr = list(get_lr_optimizer(optimizer))[0]
			print("-----------")
			print("Done! {} epoch {} loss {} lr {}".format(mode, id_epoch, epoch_loss, lr))
			send("{} epoch {}/{} loss {}".format(mode, id_epoch, n_epochs, epoch_loss))


			# record loss
			log_value("loss/{}".format(mode), epoch_loss, id_epoch)
			log_value("lr/{}".format(mode), lr, id_epoch)
			for v in model.state_dict():
				log_histogram("Layer {}".format(v), model.state_dict()[v], id_epoch)

			#save_model(model, optimizer, id_epoch, path_out, name_model='{:03d}'.format(id_epoch))

			# store model if val loss improves
			if mode==VAL:

				if best_loss > epoch_loss:
					# update loss
					best_loss = epoch_loss

					save_model(model, optimizer, id_epoch, path_out, name_model='best')

				scheduler.step(epoch_loss)
コード例 #7
0
def train_and_test(flags,
                   corruption_level=0,
                   gold_fraction=0.5,
                   get_C=uniform_mix_C):
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    C = get_C(corruption_level)

    gold, silver = prepare_data(C, gold_fraction)

    print("Gold shape = {}, Silver shape = {}".format(gold.images.shape,
                                                      silver.images.shape))

    # TODO : test on whole set
    test_x = torch.from_numpy(mnist.test.images[:500].reshape([-1, 1, 28, 28]))
    test_y = torch.from_numpy(mnist.test.labels[:500]).type(torch.LongTensor)
    print("Test shape = {}".format(test_x.shape))

    model = LeNet()
    optimizer = torch.optim.Adam([p for p in model.parameters()], lr=0.001)

    for step in range(flags.num_steps):
        x, y = silver.next_batch(flags.batch_size)
        y, y_true = np.array([l[0] for l in y]), np.array([l[1] for l in y])
        x_val, y_val = gold.next_batch(min(flags.batch_size, flags.nval))

        x, y = torch.from_numpy(x.reshape(
            [-1, 1, 28, 28])), torch.from_numpy(y).type(torch.LongTensor)
        x_val, y_val = torch.from_numpy(x_val.reshape(
            [-1, 1, 28, 28])), torch.from_numpy(y_val).type(torch.LongTensor)

        # forward
        if flags.method == "l2w":
            ex_wts = reweight_autodiff(model, x, y, x_val, y_val)
            logits, loss = model.loss(x, y, ex_wts)

            if step % dbg_steps == 0:
                tbrd.log_histogram("ex_wts", ex_wts, step=step)
                tbrd.log_value("More_than_0.01",
                               sum([x > 0.01 for x in ex_wts]),
                               step=step)
                tbrd.log_value("More_than_0.05",
                               sum([x > 0.05 for x in ex_wts]),
                               step=step)
                tbrd.log_value("More_than_0.1",
                               sum([x > 0.1 for x in ex_wts]),
                               step=step)

                mean_on_clean_labels = np.mean(
                    [ex_wts[i] for i in range(len(y)) if y[i] == y_true[i]])
                mean_on_dirty_labels = np.mean(
                    [ex_wts[i] for i in range(len(y)) if y[i] != y_true[i]])
                tbrd.log_value("mean_on_clean_labels",
                               mean_on_clean_labels,
                               step=step)
                tbrd.log_value("mean_on_dirty_labels",
                               mean_on_dirty_labels,
                               step=step)
        else:
            logits, loss = model.loss(x, y)

        print("Loss = {}".format(loss))

        # backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        tbrd.log_value("loss", loss, step=step)

        if step % dbg_steps == 0:
            model.eval()

            pred = torch.max(model.forward(test_x), 1)[1]
            test_acc = torch.sum(torch.eq(pred, test_y)).item() / float(
                test_y.shape[0])
            model.train()

            print("Test acc = {}.".format(test_acc))
            tbrd.log_value("test_acc", test_acc, step=step)
コード例 #8
0
    get_data(DATA_DIR + '/goog.csv')
    dates = np.reshape(dates, (len(dates), 1))

    svm = SVR(kernel=kernel, C=C, degree=degree, gamma=gamma)
    svm.fit(dates, prices)

    predictions = svm.predict(dates)
    (rmse, mae, r2) = eval_metrics(prices, predictions)

    log_metrics('RMSE', rmse)
    log_metrics('MAE', mae)
    log_metrics('R2', r2)

    plt.plot(dates, prices, color='black', label="Data", marker='*')
    plt.plot(dates, predictions, color='red', label="Predictions", marker='o')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.title('SVM predictions with ' + kernel + ' kernel')
    plt.legend()
    plt.savefig('svm.png')

    log_value('RMSE', rmse)
    log_value('MAE', mae)
    log_value('R2', r2)
    filename = MODEL_DIR + '/model.joblib'
    joblib.dump(svm, filename)

    img = cv2.imread('svm.png')
    log_histogram('Stock Prices', prices, step=1)
    log_images('Stock Predictions Graph', [img])
コード例 #9
0
 def log_histogram(self, name, histogram, step=-1):
     if step == -1:
         log_histogram(name, histogram, self.global_step)
     else:
         log_histogram(name, histogram, step)
     return self
コード例 #10
0
 def log_histogram(harn, key, value, n_iter):
     if False:
         print('{}={} @ {}'.format(key, value, n_iter))
     if tensorboard_logger:
         tensorboard_logger.log_histogram(key, value, n_iter)
コード例 #11
0
 def log_tensorboard(self, weights, step):
     sparsity = np.mean(weights.emission < 1e-10)
     tl.log_value('sparsity_coefficient', sparsity, step)
     tl.log_histogram('weight matrix', weights.emission.tolist(), step)