def __init__(self): config = ConfigProto() config.gpu_options.allow_growth = True #print('config: ', config) #session = InteractiveSession(config=config) STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) self.input_size = 416 # /FLAGS.size # /images = FLAGS.images # load model # / if FLAGS.framework == 'tflite': # / interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) # / else: self.saved_model_loaded = tf.saved_model.load( 'tfyolov4/checkpoints/custom-416', tags=[tag_constants.SERVING])
def main(_argv): config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) input_size = FLAGS.size video_path = FLAGS.video if FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) else: saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] # begin video capture try: vid = cv2.VideoCapture(int(video_path)) except: vid = cv2.VideoCapture(video_path) out = None if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: print('Video has ended or failed, try a different video format!') break frame_size = frame.shape[:2] image_data = cv2.resize(frame, (input_size, input_size)) image_data = image_data / 255. image_data = image_data[np.newaxis, ...].astype(np.float32) start_time = time.time() if FLAGS.framework == 'tflite': interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov3' and FLAGS.tiny == True: boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant( [input_size, input_size])) else: boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant( [input_size, input_size])) else: batch_data = tf.constant(image_data) pred_bbox = infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=FLAGS.iou, score_threshold=FLAGS.score) pred_bbox = [ boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy() ] image = utils.draw_bbox(frame, pred_bbox) fps = 1.0 / (time.time() - start_time) print("FPS: %.2f" % fps) result = np.asarray(image) cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imshow("result", result) if FLAGS.output: out.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
# physical_device name tf.config.list_physical_devices('GPU') # number of GPU's available len(tf.config.experimental.list_physical_devices('GPU')) # code to confirm tensorflow is using GPU tf.config.experimental.list_physical_devices('GPU') # CONFIG GPU from tensorflow._api.v2.compat.v1 import ConfigProto from tensorflow._api.v2.compat.v1 import InteractiveSession # avoid using 100% of GPU, else GPU overclock. config = ConfigProto() # use 50% of the GPU memory config.gpu_options.per_process_gpu_memory_fraction = 0.5 config.gpu_options.allow_growth = True session = InteractiveSession(config=config) # BEGIN THE PROGRAM # import the lib's from tensorflow.keras.layers import Input, Lambda, Dense, Flatten from tensorflow.keras.models import Model from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input from glob import glob
def __init__(self): config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config)