'update_lr', 1e-3, 'step size alpha for inner gradient update.') # 0.1 for omniglot flags.DEFINE_integer('num_updates', 1, 'number of inner gradient updates during training.') flags.DEFINE_integer( 'sine_seed', '1', 'seed for the random operations inside sine generator; sinuosidal regression expt' ) ## Model options flags.DEFINE_string('norm', 'batch_norm', 'batch_norm, layer_norm, or None') flags.DEFINE_integer( 'num_filters', 64, 'number of filters for conv nets -- 32 for miniimagenet, 64 for omiglot.') flags.DEFINE_bool( 'conv', True, 'whether or not to use a convolutional network, only applicable in some cases' ) flags.DEFINE_bool( 'max_pool', False, 'Whether or not to use max pooling rather than strided convolutions') flags.DEFINE_bool( 'stop_grad', False, 'if True, do not use second derivatives in meta-optimization (for speed)') ## Logging, saving, and testing options flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.') flags.DEFINE_string('logdir', '/tmp/data', 'directory for summaries and checkpoints.') flags.DEFINE_bool('resume', True, 'resume training if there is a model available')
'V': 99.06841, 'Y': 163.06333, 'M(ox)': 147.035405, 'groupCH3': 14.01565, 'groupOH': 17.00274, 'groupH': 1.007825, 'groupH2O': 18.01057, 'groupCH3CO': 42.01057, 'groupO': 15.994915, 'groupNH3': 17.02655 } FLAGS = flags.FLAGS flags.DEFINE_string('input_data', '', 'Input data filepath.') flags.DEFINE_string('output_data_dir', '', 'Input data filepath.') flags.DEFINE_bool('clean_peptides', False, 'True if peptide modifications are in [x] format.') flags.DEFINE_string('sequence_col', _MOD_SEQUENCE, 'Modified sequence column name in the input file.') flags.DEFINE_string('charge_col', _CHARGE, 'Charge column name in the input file.') flags.DEFINE_string('fragmentation_col', _FRAGMENTATION, 'Fragmentation column name in the input file.') flags.DEFINE_string('analyzer_col', _MASS_ANALYZER, 'Mass analyzer column name in the input file.') def generate_json_inputs(data, encoding): """Generates inputs to-be stored into a JSON file. Args: data: A pandas dataframe with modified sequence and metadata features.
def define(): """Define common flags.""" # yapf: disable # common_flags.define() may be called multiple times in unit tests. global _common_flags_defined if _common_flags_defined: return _common_flags_defined = True flags.DEFINE_integer('batch_size', 32, 'Batch size.') flags.DEFINE_integer('crop_width', None, 'Width of the central crop for images.') flags.DEFINE_integer('crop_height', None, 'Height of the central crop for images.') flags.DEFINE_string('train_log_dir', '/tmp/attention_ocr/train', 'Directory where to write event logs.') flags.DEFINE_string('dataset_name', 'fsns', 'Name of the dataset. Supported: fsns') flags.DEFINE_string('split_name', 'train', 'Dataset split name to run evaluation for: test,train.') flags.DEFINE_string('dataset_dir', None, 'Dataset root folder.') flags.DEFINE_string('checkpoint', '', 'Path for checkpoint to restore weights from.') flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.') # Model hyper parameters flags.DEFINE_float('learning_rate', 0.004, 'learning rate') flags.DEFINE_string('optimizer', 'momentum', 'the optimizer to use') flags.DEFINE_float('momentum', 0.9, 'momentum value for the momentum optimizer if used') flags.DEFINE_bool('use_augment_input', True, 'If True will use image augmentation') # Method hyper parameters # conv_tower_fn flags.DEFINE_string('final_endpoint', 'Mixed_5d', 'Endpoint to cut inception tower') # sequence_logit_fn flags.DEFINE_bool('use_attention', True, 'If True will use the attention mechanism') flags.DEFINE_bool('use_autoregression', True, 'If True will use autoregression (a feedback link)') flags.DEFINE_integer('num_lstm_units', 256, 'number of LSTM units for sequence LSTM') flags.DEFINE_float('weight_decay', 0.00004, 'weight decay for char prediction FC layers') flags.DEFINE_float('lstm_state_clip_value', 10.0, 'cell state is clipped by this value prior to the cell' ' output activation') # 'sequence_loss_fn' flags.DEFINE_float('label_smoothing', 0.1, 'weight for label smoothing') flags.DEFINE_bool('ignore_nulls', True, 'ignore null characters for computing the loss') flags.DEFINE_bool('average_across_timesteps', False, 'divide the returned cost by the total label weight')
common_flags.define() flags.DEFINE_string('export_dir', None, 'Directory to export model files to.') flags.DEFINE_integer( 'image_width', None, 'Image width used during training (or crop width if used)' ' If not set, the dataset default is used instead.') flags.DEFINE_integer( 'image_height', None, 'Image height used during training(or crop height if used)' ' If not set, the dataset default is used instead.') flags.DEFINE_string('work_dir', '/tmp', 'A directory to store temporary files.') flags.DEFINE_integer('version_number', 1, 'Version number of the model') flags.DEFINE_bool( 'export_for_serving', True, 'Whether the exported model accepts serialized tf.Example ' 'protos as input') def get_checkpoint_path(): """Returns a path to a checkpoint based on specified commandline flags. In order to specify a full path to a checkpoint use --checkpoint flag. Alternatively, if --train_log_dir was specified it will return a path to the most recent checkpoint. Raises: ValueError: in case it can't find a checkpoint. Returns: A string.
from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.layers import Input from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.compat.v1 import flags from tensorflow.keras.optimizers import RMSprop from dataset import synth_input_fn from dataset import input_fn, NUM_IMAGES from dataset import get_images_infor_from_file, ImagenetSequence keras = tf.keras flags.DEFINE_string('model', './train_dir/resnet50_model_195.h5', 'TensorFlow \'GraphDef\' file to load.') flags.DEFINE_bool('eval_tfrecords', True, 'If True then use tf_records data .') flags.DEFINE_string('data_dir', '/data3/datasets/Kaggle/fruits-360/tf_records', 'The directory where put the eval images') flags.DEFINE_bool('eval_images', False, 'If True then use tf_records data .') flags.DEFINE_string('eval_image_path', '/data3/datasets/Kaggle/fruits-360/val_for_tf2', 'The directory where put the eval images') flags.DEFINE_string('eval_image_list', '/data3/datasets/Kaggle/fruits-360/val_labels.txt', 'file has validation images list') flags.DEFINE_string('save_path', "train_dir", 'The directory where save model') flags.DEFINE_string('filename', "resnet50_model_{epoch}.h5", 'The name of sved model') flags.DEFINE_integer('label_offset', 1, 'label offset') flags.DEFINE_string('gpus', '0', 'The gpus used for running evaluation.') flags.DEFINE_bool('eval_only', False,
'seconds.') flags.DEFINE_integer('save_interval_secs', 600, 'Frequency in seconds of saving the model.') flags.DEFINE_integer('max_number_of_steps', int(1e10), 'The maximum number of gradient steps.') flags.DEFINE_string('checkpoint_inception', '', 'Checkpoint to recover inception weights from.') flags.DEFINE_float('clip_gradient_norm', 2.0, 'If greater than 0 then the gradients would be clipped by ' 'it.') flags.DEFINE_bool('sync_replicas', False, 'If True will synchronize replicas during training.') flags.DEFINE_integer('replicas_to_aggregate', 1, 'The number of gradients updates before updating params.') flags.DEFINE_integer('total_num_replicas', 1, 'Total number of worker replicas.') flags.DEFINE_integer('startup_delay_steps', 15, 'Number of training steps between replicas startup.') flags.DEFINE_boolean('reset_train_dir', False, 'If true will delete all files in the train_log_dir') flags.DEFINE_boolean('show_graph_stats', False, 'Output model size stats to stderr.')
_LENGTH = 'Length' _POSITION_COL = 'FragmentNumber' _ION_COL = 'FragmentType' _ABUNDANCE_COL = 'RelativeIntensity' _LOSS_TYPE = 'FragmentLossType' _FRAG_CHARGE = 'FragmentCharge' FLAGS = flags.FLAGS flags.DEFINE_string('metadata_file', None, 'Path to a TSV file with metadata.') flags.DEFINE_string('input_data_pattern', None, 'Input data filename pattern.') flags.DEFINE_enum('label_dim', '2', ['2', '6'], 'Number of features in the output/label time step') flags.DEFINE_string('output_data_dir', None, 'Directory with prediction outputs.') flags.DEFINE_bool('neutral_losses', False, 'True if H2O and NH3 losses are modeled.') flags.DEFINE_bool( 'batch_prediction', True, 'True if batch prediction instead of online was used to generate outputs.') flags.DEFINE_string( 'add_input_data_pattern', None, ('Input data filename pattern for additional features to-be included to ' 'the final outptu. These inputs should be formatted in the same way as' 'the model outputs - ie, JSON format with "key" and "output" values,' 'where the key is an integer and output is a list of feature values.')) flags.DEFINE_list('add_feature_names', None, 'A comma-separated list of additional feature names.') def reformat_outputs(row, label_dim, neutral_losses): """Reformats output from the spectral model into a TSV shape.