コード例 #1
0
def predFrame(frame):

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_detection.detectMultiScale(gray,
                                            scaleFactor=1.1,
                                            minNeighbors=5,
                                            minSize=(30, 30),
                                            flags=cv2.CASCADE_SCALE_IMAGE)

    if len(faces) > 0:
        with session.as_default():
            with session.graph.as_default():
                faces = sorted(faces, reverse=True,
                               key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
                (fX, fY, fW, fH) = faces
                roi = gray[fY:fY + fH, fX:fX + fW]
                roi = cv2.resize(roi, (64, 64))
                roi = roi.astype("float") / 255.0
                roi = img_to_array(roi)
                roi = np.expand_dims(roi, axis=0)

                preds = emotion_classifier.predict(roi)[0]
                return preds

    else:
        return [0, 0, 0, 0, 0, 0, 0]
コード例 #2
0
ファイル: utils.py プロジェクト: xames3/open-lpr
def load_image_into_numpy_array(path_to_image,
                                imgdim=(96, 96, 1),
                                grayScale=True):

    if None != imgdim:
        img = image.load_img(path_to_image,
                             grayscale=grayScale,
                             target_size=(imgdim[0], imgdim[1]))
    else:
        img = image.load_img(path_to_image,
                             grayscale=grayScale,
                             target_size=None)

    x = image.img_to_array(img).astype(np.uint8)

    return x
コード例 #3
0
ファイル: utils.py プロジェクト: xames3/open-lpr
def load_image_for_classification(path_to_image,
                                  imgdim=(96, 96, 1),
                                  expandDims=True,
                                  grayScale=True):

    if imgdim != None:
        img = image.load_img(path_to_image,
                             grayscale=grayScale,
                             target_size=(imgdim[0], imgdim[1]))
    else:
        img = image.load_img(path_to_image, grayscale=grayScale)

    x = image.img_to_array(img).astype(np.uint8)

    if expandDims is True:
        x = np.expand_dims(x, axis=0)

    x = x / 255

    return x
コード例 #4
0
    ret, frame = video_capture.read()
    faces = faceCascade.detectMultiScale(frame,
                                         scaleFactor=1.1,
                                         minNeighbors=5,
                                         minSize=(60, 60),
                                         flags=cv2.CASCADE_SCALE_IMAGE)
    faces_list = []
    faces_list = np.array(faces_list).reshape(-1, 64, 64, 3)
    preds = []

    for (x, y, w, h) in faces:
        face_frame = frame[y:y + h, x:x + w]
        face_frame = cv2.resize(face_frame, (64, 64))
        plt.imshow(face_frame)
        face_frame = img_to_array(face_frame)
        face_frame = np.expand_dims(face_frame, axis=0)
        face_frame = preprocess_input(face_frame)
        # faces_list.append(face_frame)
        faces_list = np.append(faces_list, face_frame, axis=0)
        if len(faces_list) > 0:
            preds = model.predict(faces_list)
        for pred in preds:
            (withoutMask, mask, incorrectMask) = pred
            if mask > withoutMask and mask > incorrectMask:
                label = "Mask"
            elif withoutMask > mask and withoutMask > incorrectMask:
                label = "NoMask"
            elif incorrectMask > mask and incorrectMask > withoutMask:
                label = "IncorrectMask"
            if label == "Mask":
コード例 #5
0
def load_img_4d(path):
    img = load_img(path)
    img = img_to_array(img) / 255
    img = np.expand_dims(img, 0)

    return img
コード例 #6
0
def generate_advs_same_bpp(orig_img_dir,
                           compression_model,
                           checkpoint_dir,
                           result_dir,
                           epsilon=1 / 255,
                           num_steps=100,
                           step_size=0.0001,
                           use_grad_sign=False,
                           img_size=(512, 768, 3),
                           reconstruction_metric='mse',
                           kappa=1e3,
                           tau=0.,
                           bpp_offset=0.):
    # create result_dir if the dir does not exist yet
    if not os.path.exists(result_dir): os.makedirs(result_dir)

    # prepare compression model
    if compression_model == 'ICLR2017':
        from adv_compression.model_iclr2017 import load_model
        sess, keras_compression_model = load_model(checkpoint_dir)
        input_placeholder = None
    elif compression_model == 'ICLR2018':
        from adv_compression.model_iclr2018 import load_model
        sess, keras_compression_model, input_placeholder = load_model(
            checkpoint_dir)
    else:
        raise ValueError("%s is not a supported compression model" %
                         compression_model)

    # prepare input examples
    files = os.listdir(orig_img_dir)
    img_files = [f for f in files if f.endswith(".png")]

    # create SubstituteGenerator object
    adv_generator = AdvGenerator(
        keras_compression_model=keras_compression_model,
        epsilon=epsilon,
        num_steps=num_steps,
        step_size=step_size,
        use_grad_sign=use_grad_sign,
        img_size=img_size,
        reconstruct_metric=reconstruction_metric,
        bpp_target=True,
        kappa=kappa,
        tau=tau,
        compression_model=compression_model,
        input_placeholder=input_placeholder)

    # generate perburbations on images
    orig_images = []
    adv_images = []
    for f in img_files:
        # keras load image
        x_image = load_img(orig_img_dir + f)
        x_image = img_to_array(x_image)
        x_image = x_image / 255
        x_image = np.expand_dims(x_image, 0)

        orig_bpp = adv_generator.get_eval_bpp(sess, x_image)
        print('targeting bpp: %.4f' % orig_bpp)
        adv_image = adv_generator.perturb(sess,
                                          orig_image=x_image,
                                          bpp_target=orig_bpp + bpp_offset)

        # save generated image
        save_path = result_dir + 'adv_' + f
        save_img(save_path, array_to_img(adv_image[0]))

        orig_images.append(x_image)
        adv_images.append(adv_image)

    return orig_images, adv_images
コード例 #7
0
def embed_croped_face(model, cropped):
    img = cv2.resize(cropped, (160, 160))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    vector = model.predict(img)
    return vector