コード例 #1
0
ファイル: tfutil.py プロジェクト: copenlu/stat-nlp-book
def mask_for_lengths(lengths,
                     batch_size=None,
                     max_length=None,
                     mask_right=True,
                     value=-1000.0):
    """
    Creates a [batch_size x max_length] mask.
    :param lengths: int64 1-dim tensor of batch_size lengths
    :param batch_size: int32 0-dim tensor or python int
    :param max_length: int32 0-dim tensor or python int
    :param mask_right: if True, everything before "lengths" becomes zero and the
        rest "value", else vice versa
    :param value: value for the mask
    :return: [batch_size x max_length] mask of zeros and "value"s
    """
    if max_length is None:
        max_length = tf.cast(tf.reduce_max(lengths), tf.int32)
    if batch_size is None:
        batch_size = tf.shape(lengths)[0]
    # [batch_size x max_length]
    mask = tf.reshape(tf.tile(tf.range(0, max_length), [batch_size]),
                      tf.pack([batch_size, -1]))
    if mask_right:
        mask = tf.greater_equal(tf.cast(mask, tf.int64),
                                tf.expand_dims(lengths, 1))
    else:
        mask = tf.less(tf.cast(mask, tf.int64), tf.expand_dims(lengths, 1))
    mask = tf.cast(mask, tf.float32) * value
    return mask
コード例 #2
0
ファイル: PrGAN.py プロジェクト: tdao38/PrGAN
    def generator(self, z_enc, train):
        with tf.variable_scope('gan'):
            base_filters = self.d_size
            h0 = ops.linear(z_enc[:, 0:(self.z_size - 1)],
                            self.z_size - 1,
                            4 * 4 * 4 * base_filters,
                            scope='g_f0')
            h0 = tf.reshape(h0, [self.batch_size, 4, 4, 4, base_filters])
            h0 = tf.nn.relu(self.g_bn0(h0, train))
            h1 = ops.deconv3d(h0, [self.batch_size, 8, 8, 8, base_filters / 2],
                              name='g_h1')
            h1 = tf.nn.relu(self.g_bn1(h1, train))
            h2 = ops.deconv3d(h1,
                              [self.batch_size, 16, 16, 16, base_filters / 4],
                              name='g_h2')
            h2 = tf.nn.relu(self.g_bn2(h2, train))
            h3 = ops.deconv3d(h2, [self.batch_size, 32, 32, 32, 1],
                              name='g_h3')
            h3 = tf.nn.relu(self.g_bn3(h3, train))
            h4 = ops.deconv3d(h3, [self.batch_size, 64, 64, 64, 1],
                              name='g_h4')
            h4 = tf.nn.sigmoid(h4) * (1.0 / self.tau)
            self.voxels = tf.reshape(h4, [self.batch_size, 64, 64, 64])
            v = z_enc[:, self.z_size - 1]

            rendered_imgs = []
            for i in range(self.batch_size):
                img = ops.project(
                    ops.transform_volume(self.voxels[i], ops.rot_matrix(v[i])),
                    self.tau)
                rendered_imgs.append(img)

            self.final_imgs = tf.reshape(tf.pack(rendered_imgs),
                                         [self.batch_size, 64, 64, 1])
        return self.final_imgs
コード例 #3
0
ファイル: ops.py プロジェクト: tdao38/PrGAN
def transform_volume(v, t):
    height = int(v.get_shape()[0])
    width = int(v.get_shape()[1])
    depth = int(v.get_shape()[2])
    grid = grid_coord(height, width, depth)
    
    xs = grid[0, :]
    ys = grid[1, :]
    zs = grid[2, :]
    
    idxs_f = tf.transpose(tf.pack([xs, ys, zs]))
    idxs_f = tf.matmul(idxs_f, t)
    
    xs_t = (idxs_f[:, 0] + 1.0) * float(width) / 2.0
    ys_t = (idxs_f[:, 1] + 1.0) * float(height) / 2.0
    zs_t = (idxs_f[:, 2] + 1.0) * float(depth) / 2.0
    
    return tf.reshape(resample_voxels(v, xs_t, ys_t, zs_t, method='trilinear'), v.get_shape())
コード例 #4
0
def hacked_tf_one_hot(indices, depth, on_value, off_value, name=None):
    '''Emulates new tf.one_hot in master.
    # Real signature:    tf.one_hot(indices, depth, on_value, off_value, axis=None, name=None)
    # Assumed signature: tf.one_hot(indices, depth, on_value, off_value, axis=-1,   name=None)

    Not needed if using newer versions of TensorFlow.
    '''

    N = tf.shape(indices)[0]
    range_Nx1 = tf.expand_dims(tf.to_int64(tf.range(N)), 1)
    indices_Nx1 = tf.expand_dims(indices, 1)
    concat = tf.concat(1, [range_Nx1, indices_Nx1])
    as_dense = tf.sparse_to_dense(
        concat,
        tf.to_int64(tf.pack([N, depth])),  # Assumption: axis=-1
        on_value,
        off_value)
    one_hot = tf.reshape(as_dense, (-1, depth), name=name)

    return one_hot
コード例 #5
0
ファイル: ops.py プロジェクト: FrederikLynggaard/DMM-GAN
def one_hot_encoding(labels, num_classes, scope=None):
    """Transform numeric labels into onehot_labels.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    scope: Optional scope for name_scope.
  Returns:
    one hot encoding of the labels.
  """
    with tf.name_scope(scope, 'OneHotEncoding', [labels]):
        batch_size = labels.get_shape()[0]
        indices = tf.expand_dims(tf.range(0, batch_size), 1)
        labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
        concated = tf.concat([indices, labels], 1)
        onehot_labels = tf.sparse_to_dense(concated,
                                           tf.pack([batch_size, num_classes]),
                                           1.0, 0.0)
        onehot_labels.set_shape([batch_size, num_classes])
        return onehot_labels
コード例 #6
0
ファイル: ops.py プロジェクト: tdao38/PrGAN
def get_voxel_values(v, xs, ys, zs):
    idxs = tf.cast(tf.pack([xs, ys, zs], axis=1), 'int32')
    idxs = tf.clip_by_value(idxs, 0, v.get_shape()[0])
    idxs = tf.expand_dims(idxs, 0)
    return gather_nd(v, idxs)
コード例 #7
0
ファイル: nnet_tf.py プロジェクト: nickgu/easy
    def __init__(self, inputs, config_reader=None):

        # active function.
        # x1 dot x2.
        pack = tf.pack([self.x1, self.x2])
        self.y = tf.reduce_sum(tf.reduce_prod(pack, [0]), [1], keep_dims=True)
コード例 #8
0
ファイル: linear.py プロジェクト: tsc2017/MIX-GAN
def Linear(name,
           input_dim,
           output_dim,
           inputs,
           biases=True,
           initialization=None,
           weightnorm=None,
           spectralnorm=None,
           gain=1.,
           weight_init=weight_init,
           weight_regularizer=weight_regularizer,
           update_sn=None):
    """
            initialization: None, `lecun`, 'glorot', `he`, 'glorot_he', `orthogonal`, `("uniform", range)`
        """

    #with tf.name_scope(name) as scope:

    def uniform(stdev, size):
        if _weights_stdev is not None:
            stdev = _weights_stdev
        return np.random.uniform(low=-stdev * np.sqrt(3),
                                 high=stdev * np.sqrt(3),
                                 size=size).astype(dtype)

    if initialization == 'lecun':  # and input_dim != output_dim):
        # disabling orth. init for now because it's too slow
        weight_values = uniform(np.sqrt(1. / input_dim),
                                (input_dim, output_dim))

    elif initialization == 'glorot' or (initialization == None):
        weight_values = uniform(np.sqrt(2. / (input_dim + output_dim)),
                                (input_dim, output_dim))

    elif initialization == 'he':

        weight_values = uniform(np.sqrt(2. / input_dim),
                                (input_dim, output_dim))

    elif initialization == 'glorot_he':

        weight_values = uniform(np.sqrt(4. / (input_dim + output_dim)),
                                (input_dim, output_dim))

    elif initialization == 'orthogonal' or \
        (initialization == None and input_dim == output_dim):

        # From lasagne
        def sample(shape):
            if len(shape) < 2:
                raise RuntimeError("Only shapes of length 2 or more are "
                                   "supported.")
            flat_shape = (shape[0], np.prod(shape[1:]))
            # TODO: why normal and not uniform?
            a = np.random.normal(0.0, 1.0, flat_shape)
            u, _, v = np.linalg.svd(a, full_matrices=False)
            # pick the one with the correct shape
            q = u if u.shape == flat_shape else v
            q = q.reshape(shape)
            return q.astype(dtype)

        weight_values = sample((input_dim, output_dim))

    elif initialization[0] == 'uniform':

        weight_values = np.random.uniform(low=-initialization[1],
                                          high=initialization[1],
                                          size=(input_dim,
                                                output_dim)).astype(dtype)

    else:
        raise Exception('Invalid initialization!')

    weight_values *= gain

    weight = lib.get_param(name + '.W', weight_values.shape, dtype,
                           weight_init, weight_regularizer)
    #weight = lib.param(name + '.W',weight_values)
    #tf.add_to_collection('G_linear' if 'Generator' in name else 'D_linear',orthogonal_regularizer_fully(0.0001)(weight))
    if weightnorm == None:
        weightnorm = _default_weightnorm
    if weightnorm:
        norm_values = np.sqrt(np.sum(np.square(weight_values), axis=0))
        # norm_values = np.linalg.norm(weight_values, axis=0)

        target_norms = lib.param(name + '.g', norm_values)

        with tf.name_scope('weightnorm') as scope:
            norms = tf.sqrt(
                tf.reduce_sum(tf.square(weight), reduction_indices=[0]))
            weight = weight * (target_norms / (norms + 1e-12))

    # spectral normalization
    power_method_update = tf.zeros([])
    t_update = tf.zeros([])
    if spectralnorm == None:
        spectralnorm = _default_spectralnorm
    if spectralnorm:
        weight = spectral_norm(weight, update_sn=update_sn)
        '''
                v=lib.param(name + '.sn.v',np.random.randn(1, output_dim),dtype=dtype,trainable=False)
                #t=tf.Variable(10.,dtype=dtype, trainable=False)
                W=tf.reshape(weight,[input_dim, output_dim])
                new_u = _l2normalize(tf.matmul(v, tf.transpose(W)))
                new_v = _l2normalize(tf.matmul(new_u, W))
                new_u = tf.stop_gradient(new_u)
                new_v = tf.stop_gradient(new_v)
                #new_u=tf.random_normal(new_u.shape)
                #new_v=tf.random_normal(new_v.shape)
                #new_u = tf.nn.l2_normalize((new_u),1)
                #new_v = tf.nn.l2_normalize((new_v),1)
                
                spectral_norm = tf.matmul(tf.matmul(new_u, W),tf.transpose(new_v))
                #spectral_norm=tf.math.reduce_logsumexp(tf.abs(W))
                #spectral_norm=tf.svd(W, compute_uv=False)[0]
                #spectral_norm=tf.stop_gradient(spectral_norm)
                
                #filters/=tf.norm(filters)
                #t_update=tf.assign(t,tf.maximum(1.,t-0.01))
                
                if name not in norm_weight_names:
                    norm_weight_names.append(name)
                    power_method_update = tf.assign(v, new_v)
                    with tf.control_dependencies([power_method_update]):
                        weight=tf.reshape(W/spectral_norm, weight.shape)#*target_norm
                else:
                    weight=tf.reshape(W/spectral_norm, weight.shape)
          '''
    # if 'Discriminator' in name:
    #     print "WARNING weight constraint on {}".format(name)
    #     weight = tf.nn.softsign(10.*weight)*.1

    if inputs.get_shape().ndims == 2:
        result = tf.matmul(inputs, weight)
    else:
        reshaped_inputs = tf.reshape(inputs, [-1, input_dim])
        result = tf.matmul(reshaped_inputs, weight)
        result = tf.reshape(
            result, tf.pack(tf.unpack(tf.shape(inputs))[:-1] + [output_dim]))
    if 'Generator' in name:
        rec = tf.matmul(result, tf.transpose(weight))
        assert inputs.shape == rec.shape
        tf.add_to_collection(
            'REC_LOSS', tf.reduce_mean((tf.stop_gradient(inputs) - rec)**2))

    if biases:
        result = tf.nn.bias_add(
            result,
            lib.param(name + '.b', np.zeros((output_dim, ), dtype=dtype)))

    return result
コード例 #9
0
def unravel_argmax(argmax, shape):
    output_list = [
        argmax // (shape[2] * shape[3]),
        argmax % (shape[2] * shape[3]) // shape[3]
    ]
    return tf.pack(output_list)