def testModelMapAndBatch(self): batch_size = 16 k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors( (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.apply( batching.map_and_batch(math_ops.matmul, num_parallel_calls=optimization.AUTOTUNE, batch_size=batch_size)) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.test_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(10): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelParallelInterleave(self): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors( (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.map(math_ops.matmul) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=10, num_parallel_calls=optimization.AUTOTUNE) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.test_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(1000): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelMapAndBatch(self): batch_size = 16 k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.apply( batching.map_and_batch( math_ops.matmul, num_parallel_calls=optimization.AUTOTUNE, batch_size=batch_size)) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.cached_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(10): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelParallelInterleave(self): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.map(math_ops.matmul) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=10, num_parallel_calls=optimization.AUTOTUNE) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.cached_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(1000): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelNested(self): k = 1024 * 1024 a = (np.random.rand(1, 8 * k), np.random.rand(8 * k, 1)) b = (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1)) c = (np.random.rand(1, 2 * k), np.random.rand(2 * k, 1)) dataset = dataset_ops.Dataset.from_tensors((a, b, c)).repeat() def f1(a, b, c): x, y = a return math_ops.matmul(x, y), b, c def f2(a, b, c): x, y = b return a, math_ops.matmul(x, y), c def f3(a, b, c): x, y = c return a, b, math_ops.matmul(x, y) dataset = dataset.map(f1, num_parallel_calls=optimization.AUTOTUNE) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=2) dataset = dataset.map(f2, num_parallel_calls=optimization.AUTOTUNE) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=2) dataset = dataset.map(f3, num_parallel_calls=optimization.AUTOTUNE) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.test_session() as sess: for _ in range(5): sess.run(get_next) for _ in range(100): start = time.time() sess.run(get_next) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelNested(self): k = 1024 * 1024 a = (np.random.rand(1, 8 * k), np.random.rand(8 * k, 1)) b = (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1)) c = (np.random.rand(1, 2 * k), np.random.rand(2 * k, 1)) dataset = dataset_ops.Dataset.from_tensors((a, b, c)).repeat() def f1(a, b, c): x, y = a return math_ops.matmul(x, y), b, c def f2(a, b, c): x, y = b return a, math_ops.matmul(x, y), c def f3(a, b, c): x, y = c return a, b, math_ops.matmul(x, y) dataset = dataset.map(f1, num_parallel_calls=optimization.AUTOTUNE) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=2) dataset = dataset.map(f2, num_parallel_calls=optimization.AUTOTUNE) dataset = dataset_ops.Dataset.range(1).repeat().interleave( lambda _: dataset, cycle_length=2) dataset = dataset.map(f3, num_parallel_calls=optimization.AUTOTUNE) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.cached_session() as sess: for _ in range(5): sess.run(get_next) for _ in range(100): start = time.time() sess.run(get_next) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelMap(self): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors( (np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.map(math_ops.matmul) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.test_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(100): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))
def testModelMap(self): k = 1024 * 1024 dataset = dataset_ops.Dataset.from_tensors((np.random.rand(1, 4 * k), np.random.rand(4 * k, 1))).repeat() dataset = dataset.map(math_ops.matmul) iterator = dataset.apply(optimization.model()).make_one_shot_iterator() get_next = iterator.get_next() deltas = [] with self.cached_session() as sess: for _ in range(5): sess.run(get_next.op) for _ in range(100): start = time.time() sess.run(get_next.op) end = time.time() deltas.append(end - start) print("%f (median), %f (mean), %f (stddev), %f (min), %f (max)\n" % (np.median(deltas), np.mean(deltas), np.std(deltas), np.min(deltas), np.max(deltas)))