def make_batch_feature(self, filenames, num_epochs, batch_size, reader_num_threads=1, parser_num_threads=1, shuffle=False, shuffle_seed=None, drop_final_batch=False): self.filenames = filenames self.num_epochs = num_epochs self.batch_size = batch_size return readers.make_batched_features_dataset( file_pattern=self.filenames, batch_size=self.batch_size, features={ "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), "keywords": parsing_ops.VarLenFeature(dtypes.string) }, reader=core_readers.TFRecordDataset, num_epochs=self.num_epochs, shuffle=shuffle, shuffle_seed=shuffle_seed, reader_num_threads=reader_num_threads, parser_num_threads=parser_num_threads, drop_final_batch=drop_final_batch)
def _read_batch_features(self, filenames, num_epochs, batch_size, reader_num_threads=1, parser_num_threads=1, shuffle=False, shuffle_seed=None): self.filenames = filenames self.num_epochs = num_epochs self.batch_size = batch_size return readers.make_batched_features_dataset( file_pattern=self.filenames, batch_size=self.batch_size, features={ "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), "keywords": parsing_ops.VarLenFeature(dtypes.string) }, reader=core_readers.TFRecordDataset, num_epochs=self.num_epochs, shuffle=shuffle, shuffle_seed=shuffle_seed, reader_num_threads=reader_num_threads, parser_num_threads=parser_num_threads).make_one_shot_iterator( ).get_next()
def _predict_input_fn(): dataset = readers.make_batched_features_dataset( examples_file, batch_size, feature_spec, num_epochs=1) def features_fn(features): features.pop('label') return features return dataset.map(features_fn)
def make_batch_feature(self, filenames, num_epochs, batch_size, label_key=None, reader_num_threads=1, parser_num_threads=1, shuffle=False, shuffle_seed=None, drop_final_batch=False): self.filenames = filenames self.num_epochs = num_epochs self.batch_size = batch_size return readers.make_batched_features_dataset( file_pattern=self.filenames, batch_size=self.batch_size, features={ "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), "keywords": parsing_ops.VarLenFeature(dtypes.string), "label": parsing_ops.FixedLenFeature([], dtypes.string), }, label_key=label_key, reader=core_readers.TFRecordDataset, num_epochs=self.num_epochs, shuffle=shuffle, shuffle_seed=shuffle_seed, reader_num_threads=reader_num_threads, parser_num_threads=parser_num_threads, drop_final_batch=drop_final_batch)
def _eval_input_fn(): dataset = readers.make_batched_features_dataset(examples_file, batch_size, feature_spec, num_epochs=1) return dataset.map(lambda features: (features, features.pop('label')))
def _eval_input_fn(): dataset = readers.make_batched_features_dataset( examples_file, batch_size, feature_spec, num_epochs=1) return dataset.map(lambda features: (features, features.pop('label')))