コード例 #1
0
    def __init__(self, sess, state_size, action_size, hidden_dim):
        self.sess = sess

        with tf.variable_scope('policy_net'):
            self.states = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size],
                                         name='policy_states')
            self.targets = tf.placeholder(dtype=tf.float32,
                                          shape=[None, 1],
                                          name='policy_targets')
            self.actions = tf.placeholder(dtype=tf.int32,
                                          shape=[None, 1],
                                          name='policy_actions')

            x = Dense(units=hidden_dim, activation='relu')(self.states)
            x = Dense(units=hidden_dim, activation='relu')(x)
            self.logits = Dense(units=action_size, activation=None)(x)
            dist = Categorical(logits=self.logits)

            optimizer = tf.train.AdamOptimizer(0.001)

            # Get action
            self.new_action = dist.sample()
            self.new_log_prob = dist.log_prob(self.new_action)

            # Calc loss
            log_prob = dist.log_prob(tf.squeeze(self.actions))
            loss = tf.reduce_mean(tf.squeeze(self.targets) - 0.2 * log_prob)
            self.train_op = optimizer.minimize(loss,
                                               var_list=_params('policy_net'))
コード例 #2
0
	def generate_samples(self, sess, args, chars, vocab, seq_length = 200, 
						 initial = ' ', 
						 datafile = 'data/gan/fake_reviews.txt'):
		''' Generate a batch of reviews'''		
		state = self.cell_gen.zero_state(args.batch_size, tf.float32).eval()

		sequence_matrix = []
		for i in xrange(args.batch_size):
			sequence_matrix.append([])
		char_arr = args.batch_size * [initial]
		for n in xrange(seq_length):
			x = np.zeros((args.batch_size, 1))
			for i, char in enumerate(char_arr):
				x[i,0] = vocab[char]    
			feed = {self.input_data: x, self.initial_state_gen: state} 
			sample_op = Categorical(self.logits_sequence[0])
			[sample_indexes, state] = sess.run(
				[sample_op.sample(n = 1), self.final_state_gen], feed)
			char_arr = [chars[i] for i in tf.squeeze(sample_indexes)]
			for i, char in enumerate(char_arr):
				sequence_matrix[i].append(char)

		with open(datafile, 'a+') as f:
			for line in sequence_matrix:
				print ''.join(line)
				print>>f, ''.join(line) 

		return sequence_matrix
コード例 #3
0
ファイル: helper.py プロジェクト: pastelmind/ast-codez
 def sample(self, time, outputs, state, name=None):
     with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                         [time, outputs, state]):
         # Return -1s where we did not sample, and sample_ids elsewhere
         select_sample_noise = random_ops.random_uniform(
             [self.batch_size], seed=self._scheduling_seed)
         select_sample = (self._sampling_probability > select_sample_noise)
         sample_id_sampler = Categorical(logits=outputs)
         return array_ops.where(select_sample,
                                sample_id_sampler.sample(seed=self._seed),
                                array_ops.tile([-1], [self.batch_size]))
コード例 #4
0
def get_gaussian_mixture_log_prob(cat_probs, gauss_mu, gauss_sigma):
  """Get the logrithmic p.d.f. of a Gaussian mixture model.

  Args:
    cat_probs:
      `1-D` tensor with unit (reduce) sum, as the categorical probabilities.

    gauss_mu:
      List of tensors, with the length the shape of `cat_probs`, as the `mu`
      values of the Gaussian components. All these tensors shall share the
      same shape (as, e.g., `gauss_mu[0]`)

    gauss_sigma:
      List of tensors, with the length the shape of `cat_probs`, as the `sigma`
      values of the Gaussian components. Thus shall be all positive, and shall
      be all the same shape as `gauss_mu[0]`.

  Returns:
    Callable, mapping from tensor of the shape of `gauss_mu[0]` to scalar, as
    the p.d.f..
  """

  n_cats = cat_probs.shape[0]
  cat = Categorical(probs=cat_probs)
  components = [
      Independent( Normal(gauss_mu[i], gauss_sigma[i]) )
      for i in range(n_cats)
  ]
  distribution = Mixture(cat=cat, components=components)

  return distribution.log_prob
コード例 #5
0
ファイル: mdn.py プロジェクト: chaiyujin/simple_mdn
def mixture(locs, scales, pi, K):
    cat = Categorical(probs=pi)
    components = [
        MultivariateNormalDiag(loc=locs[:, i, :], scale_diag=scales[:, i, :])
        for i in range(K)]
    # get the mixture distribution
    mix = Mixture(cat=cat, components=components)
    return mix
コード例 #6
0
def mog_from_out_params(mog_params, use_log_scales):
    logit_probs, means, std_params = tf.split(mog_params, num_or_size_splits=3, axis=2)
    cat = Categorical(logits=logit_probs)

    nr_mix = mog_params.get_shape().as_list()[2] // 3
    components = []
    for i in range(nr_mix):
        gauss_params = tf.stack([means[:, :, i], std_params[:, :, i]], axis=2)
        mean, std = mean_std_from_out_params(gauss_params, use_log_scales)
        components.append(Normal(loc=mean, scale=std))
    distribution = Mixture(cat=cat, components=components)
    return distribution
コード例 #7
0
 def sampling_func(y_pred):
     out_mu, out_sigma, out_pi = tf.split(y_pred, num_or_size_splits=[num_mixes * output_dim,
                                                                      num_mixes * output_dim,
                                                                      num_mixes],
                                          axis=1, name='mdn_coef_split')
     cat = Categorical(logits=out_pi)
     component_splits = [output_dim] * num_mixes
     mus = tf.split(out_mu, num_or_size_splits=component_splits, axis=1)
     sigs = tf.split(out_sigma, num_or_size_splits=component_splits, axis=1)
     coll = [MultivariateNormalDiag(loc=loc, scale_diag=scale) for loc, scale
             in zip(mus, sigs)]
     mixture = Mixture(cat=cat, components=coll)
     samp = mixture.sample()
     # Todo: temperature adjustment for sampling function.
     return samp
コード例 #8
0
 def loss_func(y_true, y_pred):
     out_mu, out_sigma, out_pi = tf.split(y_pred, num_or_size_splits=[num_mixes * output_dim,
                                                                      num_mixes * output_dim,
                                                                      num_mixes],
                                          axis=1, name='mdn_coef_split')
     cat = Categorical(logits=out_pi)
     component_splits = [output_dim] * num_mixes
     mus = tf.split(out_mu, num_or_size_splits=component_splits, axis=1)
     sigs = tf.split(out_sigma, num_or_size_splits=component_splits, axis=1)
     coll = [MultivariateNormalDiag(loc=loc, scale_diag=scale) for loc, scale
             in zip(mus, sigs)]
     mixture = Mixture(cat=cat, components=coll)
     loss = mixture.log_prob(y_true)
     loss = tf.negative(loss)
     loss = tf.reduce_mean(loss)
     return loss
コード例 #9
0
def get_trained_q(trained_var):
  """Get the trained inference distribution :math:`q` (c.f. section "Notation"
  in the documentation).

  Args:
    trained_var:
      `dict` object with keys contains "a", "mu", and "zeta", and values being
      either numpy arraies or TensorFlow tensors (`tf.constant`), as the value
      of the trained value of variables in "nn4post".

  Returns:
    An instance of `Mixture`.
  """

  var_names = ['a', 'mu', 'zeta']
  for name in var_names:
    if name not in trained_var.keys():
      e = (
          '{0} is not in the keys of {1}.'
      ).format(name, trained_var)
      raise Exception(e)

  _trained_var = {
      name:
          val if isinstance(val, tf.Tensor) \
          else tf.constant(val)
      for name, val in trained_var.items()
  }

  cat = Categorical(tf.nn.softmax(_trained_var['a']))
  mu_zetas = list(zip(
      tf.unstack(_trained_var['mu'], axis=0),
      tf.unstack(_trained_var['zeta'], axis=0),
  ))
  components = [
      Independent(
          NormalWithSoftplusScale(mu, zeta)
      ) for mu, zeta in mu_zetas
  ]
  mixture = Mixture(cat, components)

  return mixture
コード例 #10
0
ファイル: test_on_mnist.py プロジェクト: shuiruge/nn4post
def model(input_, param):
    """ Shall be implemented by TensorFlow. This is an example, as a shallow
    neural network.

    Args:
        input_:
            `dict`, like `{'x_1': x_1, 'x_2': x_2}, with values Tensors.
        param:
            `dict`, like `{'w': w, 'b': b}, with values Tensors.

    Returns:
        `dict`, like `{'y': Y}`, where `Y` is an instance of
        `tf.distributions.Distribution`.
    """
    # shape: `[None, n_hiddens]`
    hidden = tf.sigmoid(tf.matmul(input_['x'], param['w_h']) + param['b_h'])
    # shape: `[None, n_outputs]`
    logits = tf.matmul(hidden, param['w_a']) + param['b_a']

    Y = Categorical(logits=logits)
    return {'y': Y}
コード例 #11
0
def get_trained_posterior(trained_var, param_shape):
  """
  Args:
    trained_var:
      `dict` object with keys contains "a", "mu", and "zeta", and values being
      either numpy arraies or TensorFlow tensors (`tf.constant`), as the value
      of the trained value of variables in "nn4post".
	
	param_shape:
      `dict` with keys the parameter-names and values the assocated shapes (as
      lists).

  Returns:
	Dictionary with keys the parameter-names and values instances of `Mixture`
    as the distributions that fit the associated posteriors.
  """

  n_c = trained_var['a'].shape[0]
  cat = Categorical(logits=trained_var['a'])

  parse_param = get_parse_param(param_shape)
  mu_list = [parse_param(trained_var['mu'][i]) for i in range(n_c)]
  zeta_list = [parse_param(trained_var['zeta'][i]) for i in range(n_c)]

  trained_posterior = {}

  for param_name in trained_var.keys():

    components = [
        Independent(NormalWithSoftplusScale(
            mu_list[i][param_name], zeta_list[i][param_name]))
        for i in range(n_c)
    ]
    mixture = Mixture(cat, components)
    trained_posterior[param_name] = mixture

  return trained_posterior
コード例 #12
0
#OPTIMIZER = tf.train.AdamOptimizer(LR)
OPTIMIZER = tf.train.RMSPropOptimizer(LR)
DTYPE = 'float32'
SKIP_STEP = 50

# -- Gaussian Mixture Distribution
with tf.name_scope('posterior'):

    target_c = tf.constant([0.05, 0.25, 0.70])
    target_mu = tf.stack(
        [tf.ones([N_D]) * (i - 1) * 3 for i in range(TARGET_N_C)], axis=0)
    target_zeta_val = np.zeros([TARGET_N_C, N_D])
    #target_zeta_val[1] = np.ones([N_D]) * 5.0
    target_zeta = tf.constant(target_zeta_val, dtype='float32')

    cat = Categorical(probs=target_c)
    components = [
        Independent(NormalWithSoftplusScale(target_mu[i], target_zeta[i]))
        for i in range(TARGET_N_C)
    ]
    p = Mixture(cat, components)

    def log_posterior(theta):
        return p.log_prob(theta)


# test!
# test 1
init_var = {
    'a':
        np.zeros([N_C], dtype=DTYPE),
コード例 #13
0
 def sample(probs, name):
     dist = Categorical(probs=probs, allow_nan_stats=False,
                        name=name)  # XXX Categorical/logits/Log:0: NaN
     return dist.sample()
コード例 #14
0
def categorical_log_prob(p, x):
    return Categorical(p).log_prob(x)
コード例 #15
0
def categorical_sample(p):
    return Categorical(p).sample()
コード例 #16
0
ファイル: modeling.py プロジェクト: NHLBI-BCB/scVAE
    def inference(self):

        encoder = self.x

        with tf.variable_scope("ENCODER"):
            for i, hidden_size in enumerate(self.hidden_sizes):
                encoder = dense_layer(inputs=encoder,
                                      num_outputs=hidden_size,
                                      activation_fn=relu,
                                      use_batch_norm=self.use_batch_norm,
                                      is_training=self.is_training,
                                      scope='{:d}'.format(i + 1))

        with tf.variable_scope("Z"):
            z_mu = dense_layer(inputs=encoder,
                               num_outputs=self.latent_size,
                               activation_fn=None,
                               use_batch_norm=False,
                               is_training=self.is_training,
                               scope='MU')

            z_sigma = dense_layer(
                inputs=encoder,
                num_outputs=self.latent_size,
                activation_fn=lambda x: tf.exp(tf.clip_by_value(x, -3, 3)),
                use_batch_norm=False,
                is_training=self.is_training,
                scope='SIGMA')

            self.q_z_given_x = Normal(mu=z_mu, sigma=z_sigma)

            # Mean of z
            self.z_mean = self.q_z_given_x.mean()

            # Stochastic layer
            self.z = self.q_z_given_x.sample()

        # Decoder - Generative model, p(x|z)

        if self.use_count_sum:
            decoder = tf.concat([self.z, self.n], axis=1, name='Z_N')
        else:
            decoder = self.z

        with tf.variable_scope("DECODER"):
            for i, hidden_size in enumerate(reversed(self.hidden_sizes)):
                decoder = dense_layer(
                    inputs=decoder,
                    num_outputs=hidden_size,
                    activation_fn=relu,
                    use_batch_norm=self.use_batch_norm,
                    is_training=self.is_training,
                    scope='{:d}'.format(len(self.hidden_sizes) - i))

        # Reconstruction distribution parameterisation

        with tf.variable_scope("X_TILDE"):

            x_theta = {}

            for parameter in self.reconstruction_distribution["parameters"]:

                parameter_activation_function = \
                    self.reconstruction_distribution["parameters"]\
                    [parameter]["activation function"]
                p_min, p_max = \
                    self.reconstruction_distribution["parameters"]\
                    [parameter]["support"]

                x_theta[parameter] = dense_layer(
                    inputs=decoder,
                    num_outputs=self.feature_size,
                    activation_fn=lambda x: tf.clip_by_value(
                        parameter_activation_function(x), p_min + self.epsilon,
                        p_max - self.epsilon),
                    is_training=self.is_training,
                    scope=parameter.upper())

            self.p_x_given_z = self.reconstruction_distribution["class"](
                x_theta)

            if self.k_max:

                x_logits = dense_layer(inputs=decoder,
                                       num_outputs=self.feature_size *
                                       self.k_max,
                                       activation_fn=None,
                                       is_training=self.is_training,
                                       scope="P_K")

                x_logits = tf.reshape(x_logits,
                                      [-1, self.feature_size, self.k_max])

                self.p_x_given_z = Categorized(
                    dist=self.p_x_given_z, cat=Categorical(logits=x_logits))

            self.x_tilde_mean = self.p_x_given_z.mean()

        # Add histogram summaries for the trainable parameters
        for parameter in tf.trainable_variables():
            tf.summary.histogram(parameter.name, parameter)
コード例 #17
0
    def build_model(self):
        net = tl.layers.InputLayer(self.input, name='input_layer')
        with tf.variable_scope('fc1'):
            net = tl.layers.TimeDistributedLayer(
                net,
                layer_class=tl.layers.DenseLayer,
                args={
                    'n_units': 32,
                    'act': tf.nn.elu,
                    'W_init': tf.contrib.layers.variance_scaling_initializer(),
                    'W_init_args': {
                        'regularizer':
                        tf.contrib.layers.l2_regularizer(
                            self.args.weight_decay)
                    },
                    'name': 'fc1_'
                },
                name='time_dense_fc1')
            # net = tl.layers.DropoutLayer(net, keep=self.args.keep_prob, name='fc1_drop')
        with tf.variable_scope('highway'):
            num_highway = 3
            for idx in xrange(num_highway):
                highway_args = {
                    'n_units': 32,
                    'act': tf.nn.elu,
                    'W_init': tf.contrib.layers.variance_scaling_initializer(),
                    'b_init': tf.constant_initializer(value=0.0),
                    'W_init_args': {
                        'regularizer':
                        tf.contrib.layers.l2_regularizer(
                            self.args.weight_decay)
                    },
                    'name': 'highway_%03d_' % idx
                }
                net = tl.layers.TimeDistributedLayer(
                    net,
                    layer_class=utility.Highway,
                    args=highway_args,
                    name='time_dense_highway_%d' % idx)
        with tf.variable_scope('fc2'):
            net = tl.layers.TimeDistributedLayer(
                net,
                layer_class=tl.layers.DenseLayer,
                args={
                    'n_units': 64,
                    'act': tf.nn.elu,
                    'W_init': tf.contrib.layers.variance_scaling_initializer(),
                    'W_init_args': {
                        'regularizer':
                        tf.contrib.layers.l2_regularizer(
                            self.args.weight_decay)
                    },
                    'name': 'highway_to_fc_'
                },
                name='time_dense_highway_to_fc')
            net = tl.layers.DropoutLayer(net,
                                         keep=self.args.keep_prob,
                                         name='hw_to_fc_drop')
        with tf.variable_scope('RNN'):
            if self.args.rnn_cell == 'lstm':
                rnn_cell_fn = tf.contrib.rnn.BasicLSTMCell
            elif self.args.rnn_cell == 'gru':
                rnn_cell_fn = tf.contrib.rnn.GRUCell
            else:
                raise ValueError(
                    'Unimplemented RNN Cell, should be \'lstm\' or \'gru\'')
            self.rnn_keep_prob = tf.placeholder(tf.float32)
            rnn_layer_name = 'DRNN_layer'
            net = tl.layers.DynamicRNNLayer(layer=net,
                                            cell_fn=rnn_cell_fn,
                                            n_hidden=128,
                                            dropout=(1.0, self.rnn_keep_prob),
                                            n_layer=self.args.num_cells,
                                            return_last=True,
                                            name=rnn_layer_name)
            rnn_weights_params = [
                var for var in net.all_params
                if rnn_layer_name in var.name and 'weights' in var.name
            ]
            self.add_regularization_loss(rnn_weights_params)
        net = tl.layers.DenseLayer(
            net,
            n_units=256,
            act=tf.nn.elu,
            W_init=tf.contrib.layers.variance_scaling_initializer(),
            W_init_args={
                'regularizer':
                tf.contrib.layers.l2_regularizer(self.args.weight_decay)
            },
            name='fc_3')
        net = tl.layers.DenseLayer(
            net,
            n_units=128,
            act=tf.nn.elu,
            W_init=tf.contrib.layers.variance_scaling_initializer(),
            W_init_args={
                'regularizer':
                tf.contrib.layers.l2_regularizer(self.args.weight_decay)
            },
            name='fc_4')
        mus_num = self.args.num_mixtures * self.args.gaussian_dim
        sigmas_num = self.args.num_mixtures * self.args.gaussian_dim
        weights_num = self.args.num_mixtures
        num_output = mus_num + sigmas_num + weights_num
        net = tl.layers.DenseLayer(
            net,
            n_units=num_output * self.args.pred_frames_num,
            act=tf.identity,
            W_init=tf.contrib.layers.variance_scaling_initializer(),
            W_init_args={
                'regularizer':
                tf.contrib.layers.l2_regularizer(self.args.weight_decay)
            },
            name='nn_output')
        self.net = tl.layers.ReshapeLayer(
            net,
            shape=[-1, self.args.pred_frames_num, num_output],
            name='reshape')

        output = self.net.outputs
        with tf.variable_scope('MDN'):
            mus = output[:, :, :mus_num]
            sigmas = tf.exp(output[:, :, mus_num:mus_num + sigmas_num])
            self.weight_logits = output[:, :, mus_num + sigmas_num:]
            self.mus = tf.reshape(
                mus, (-1, self.args.pred_frames_num, self.args.num_mixtures,
                      self.args.gaussian_dim))
            self.sigmas = tf.reshape(
                sigmas, (-1, self.args.pred_frames_num, self.args.num_mixtures,
                         self.args.gaussian_dim))
            self.weights = tf.nn.softmax(self.weight_logits)
            self.y_mix = []
            for time_step in xrange(self.args.pred_frames_num):
                cat = Categorical(logits=self.weight_logits[:, time_step, :])
                components = [
                    MultivariateNormalDiag(mu=mu, diag_stdev=sigma)
                    for mu, sigma in zip(
                        tf.unstack(
                            tf.transpose(self.mus[:, time_step, :, :], (1, 0,
                                                                        2))),
                        tf.unstack(
                            tf.transpose(self.sigmas[:,
                                                     time_step, :, :], (1, 0,
                                                                        2))))
                ]
                self.y_mix.append(Mixture(cat=cat, components=components))
        self.loss = self.get_loss()
コード例 #18
0
             "initial value": tf.ones
         },
         "mus": {
             "support": [-inf, inf],
             "activation function": identity,
             "initial value": lambda x: tf.random_normal(x, stddev=1)
         },
         "log_sigmas": {
             "support": [-3, 3],
             "activation function": identity,
             "initial value": tf.zeros
         }
     },
     "class":
     lambda theta: Mixture(
         cat=Categorical(logits=theta["logits"]),
         components=[
             MultivariateNormalDiag(loc=m, scale_diag=tf.exp(s))
             for m, s in zip(theta["mus"], theta["log_sigmas"])
         ])
 },
 "categorical": {
     "parameters": {
         "logits": {
             "support": [-inf, inf],
             "activation function": identity
         }
     },
     "class": lambda theta: Categorical(logits=theta["logits"]),
 },
 "bernoulli": {
コード例 #19
0
    def __init__(self, lr, s_len, a_len):
        self.s = tf.placeholder(dtype=tf.float32,
                                shape=(None, s_len),
                                name='s')

        t1 = tf.layers.dense(
            inputs=self.s,
            units=16,
            activation=tf.nn.relu,
            use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(),
            bias_initializer=tf.zeros_initializer(),
            kernel_regularizer=None,
            bias_regularizer=None,
            activity_regularizer=None,
            trainable=True,
            name='t1')

        t2 = tf.layers.dense(
            inputs=t1,
            units=16,
            activation=tf.nn.relu,
            use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(),
            bias_initializer=tf.zeros_initializer(),
            kernel_regularizer=None,
            bias_regularizer=None,
            activity_regularizer=None,
            trainable=True,
            name='t2')

        t3 = tf.layers.dense(
            inputs=t2,
            units=16,
            activation=tf.nn.sigmoid,
            use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(),
            bias_initializer=tf.zeros_initializer(),
            kernel_regularizer=None,
            bias_regularizer=None,
            activity_regularizer=None,
            trainable=True,
            name='t3')

        self.p = tf.layers.dense(
            inputs=t3,
            units=a_len,
            activation=tf.nn.softmax,
            use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(),
            bias_initializer=tf.zeros_initializer(),
            kernel_regularizer=None,
            bias_regularizer=None,
            activity_regularizer=None,
            trainable=True,
            name='p')

        self.ava = tf.placeholder(dtype=bool,
                                  shape=[None, 13 * 8 * 13],
                                  name='ava')

        self.p_unnorm = self.p * tf.cast(self.ava, tf.float32)
        self.p_norm = self.p_unnorm / (tf.reduce_sum(self.p_unnorm, axis=1))

        self.dist = Categorical(probs=self.p_norm)
        self.a = self.dist.sample()

        self.G = tf.placeholder(dtype=tf.float32, shape=[None], name='G')
        self.a_acted = tf.placeholder(dtype=tf.int32,
                                      shape=[None],
                                      name='a_acted')

        a_indices = tf.stack([
            tf.range(tf.shape(self.a_acted)[0], dtype=tf.int32), self.a_acted
        ],
                             axis=1)
        self.gathered_p = tf.gather_nd(params=self.p, indices=a_indices)
        self.logpi = tf.log(self.gathered_p)

        self.loss = -tf.reduce_mean(self.G * self.logpi)
        self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)
        self.sess = tf.Session()
        init = tf.global_variables_initializer()
        self.sess.run(init)
        self.saver = tf.train.Saver()
        return
コード例 #20
0
 def sample(probs):
   dist = Categorical(probs=probs)
   return dist.sample()
コード例 #21
0
 def sample(probs):
     dist = Categorical(probs=probs, allow_nan_stats=False)
     return dist.sample()