コード例 #1
0
ファイル: gradient_tape.py プロジェクト: hiwgy/tfdemo
# A loss function using mean-squared error
def loss(weights, biases):
    error = prediction(training_inputs, weights, biases) - training_outputs
    return tf.reduce_mean(tf.square(error))


# Return the derivative of loss with respect tot weight and bias
def grad(weights, biases):
    with tf.GradientTape() as tape:
        loss_value = loss(weights, biases)
    return tape.gradient(loss_value, [weights, biases])


train_steps = 200
learning_rate = 0.01
# Start with arbitrary values for M and B on the same batch of data
W = tfe.Variable(5.)
B = tfe.Variable(10.)

print("Initial loss: {:.3f}".format(loss(W, B)))

for i in range(train_steps):
    dW, dB = grad(W, B)
    W.assign_sub(dW * learning_rate)
    B.assign_sub(dB * learning_rate)
    if i % 20 == 0:
        print("Loss at step {:03d}: {:.3f}".format(i, loss(W, B)))

print("Final loss: {:.3f}".format(loss(W, B)))
print("W = {:.3f}, B = {:.3f}".format(W.numpy(), B.numpy()))
コード例 #2
0
  def attack(self, imgs):
    """
    Return a tensor that constructs adversarial examples for the given
    input. Generate uses tf.py_func in order to operate over tensors.
    :param x: A tensor with the inputs.
    :param kwargs: See `parse_params`
    """
    imgs = tf.cast(imgs, tf.float32)
    preds = self.fn_logits(imgs)
    preds_max = tf.reduce_max(preds, 1, keepdims=True)
    original_predictions = tf.to_float(tf.equal(preds, preds_max))
    labs = tf.stop_gradient(original_predictions)
    repeat = self.binary_search_steps >= 10
    shape = tf.shape(imgs)

    # # the variable we're going to optimize over
    # modifier = tfe.Variable(tf.zeros(shape, dtype=tf_dtype))

    def compute_newimage(imgs, modifier):
      # the resulting instance, tanh'd to keep bounded from clip_min
      # to clip_max
      newimg = (tf.tanh(modifier + imgs) + 1) / 2
      newimg = newimg * (self.clip_max - self.clip_min) + self.clip_min
      return newimg

    def get_l2dist(imgs, newimg):
      # distance to the input data
      other = (tf.tanh(imgs) + 1) / 2 * (self.clip_max - self.clip_min) + self.clip_min
      sum_axis = list(range(1, len(shape.numpy())))
      l2dist = tf.reduce_sum(tf.square(newimg - other), sum_axis)
      return l2dist

    def loss(timg, tlab, const, modifier):
      newimg = compute_newimage(timg, modifier)
      # prediction BEFORE-SOFTMAX of the model
      if self.sample <= 1:
        output = self.fn_logits(newimg)
      else:
        logging.info(
          "Monte Carlo (MC) on attacks, sample: {}".format(self.sample))
        for i in range(self.sample):
          logits = self.fn_logits(newimg)
          if i == 0:
            assert logits.op.type != 'Softmax'
          output.append(logits)
        output = tf.reduct_mean(output, 0)

      # distantce to the input data
      l2dist = get_l2dist(timg, newimg)

      # compute the probability of the label class versus the maximum other
      real_target = tf.reduce_sum((tlab) * output, 1)
      other_target = tf.reduce_max((1 - tlab) * output - tlab * 10000, 1)
      zero = tf.constant(0., dtype=tf_dtype)
      if self.y_target:
        # if targeted, optimize for making the other class most likely
        loss1 = tf.maximum(zero, other_target - real_target + self.confidence)
      else:
        # if untargeted, optimize for making this class least likely.
        loss1 = tf.maximum(zero, real_target - other_target + self.confidence)

      # sum up the losses
      loss2 = tf.reduce_sum(l2dist)
      loss1 = tf.reduce_sum(const * loss1)
      loss = loss1 + loss2
      return loss, output


    def grad(imgs, labs, const, modifier):
      with tf.GradientTape(watch_accessed_variables=False) as tape:
        tape.watch(modifier)
        loss_value, logits = loss(imgs, labs, const, modifier)
        with tape.stop_recording():
          gradients = tape.gradient(loss_value, [modifier])
      return gradients, loss_value, logits


    def compare_multi(x, y):
      x_array = tf.unstack(x)
      if self.y_target:
        x_array[y] = x_array[y] - self.confidence
      else:
        x_array[y] = x_array[y] + self.confidence
      x = tf.argmax(tf.stack(x_array))
      if self.y_target:
        return x == y
      else:
        return x != y

    def compare_single(x, y):
      if self.y_target:
        return x == y
      else:
        return x != y


    # batch_size = tf.shape(imgs)[0]
    batch_size = imgs.get_shape().as_list()[0]

    # re-scale instances to be within range [0, 1]
    imgs = (imgs - self.clip_min) / (self.clip_max - self.clip_min)
    imgs = tf.clip_by_value(imgs, 0, 1)
    # now convert to [-1, 1]
    imgs = (imgs * 2) - 1
    # convert to tanh-space
    imgs = tf.atanh(imgs * .999999)

    # set the lower and upper bounds accordingly
    lower_bound = tfe.Variable(tf.zeros(batch_size), trainable=False)
    const = tfe.Variable(tf.ones(batch_size) * self.initial_const, trainable=False)
    upper_bound = tfe.Variable(tf.ones(batch_size) * 1e10, trainable=False)

    # placeholders for the best l2, score, and instance attack found so far
    o_bestl2 = tfe.Variable(tf.constant(1e10, shape=(batch_size, )), trainable=False)
    o_bestscore = tfe.Variable(tf.constant(-1, shape=(batch_size, )), trainable=False)
    o_bestattack = tfe.Variable(tf.identity(imgs), trainable=False)

    for outer_step in range(self.binary_search_steps):

      # completely reset adam's internal state.
      modifier = tfe.Variable(tf.zeros(shape, dtype=tf_dtype))
      optimizer = tf.train.AdamOptimizer(self.learning_rate)

      bestl2 = tfe.Variable(tf.constant(1e10, shape=(batch_size, )), trainable=False)
      bestscore = tfe.Variable(tf.constant(-1, shape=(batch_size, )), trainable=False)
      logging.info("  Binary search step %s of %s",
                    outer_step, self.binary_search_steps)

      # The last iteration (if we run many steps) repeat the search once.
      if repeat and outer_step == self.binary_search_steps - 1:
        const = upper_bound

      prev = 1e6
      for iteration in range(self.max_iterations):

        import resource, gc
        mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
        logging.info('resource {}'.format(mem))
        gc.collect()

        tf.set_random_seed(np.random.randint(0, 100))

        # perform the attack
        gradients, loss_value, scores = grad(imgs, labs, const, modifier)
        optimizer.apply_gradients(zip(gradients, [modifier]))

        nimg = compute_newimage(imgs, modifier)
        l2s = get_l2dist(imgs, nimg)

        if iteration % ((self.max_iterations // 10) or 1) == 0 and \
           logging.get_verbosity() == logging.DEBUG:
          l2_mean = tf.reduce_mean(l2s).numpy()
          logging.debug(
            "    Iteration {} of {}: loss={:.3g} l2={:.3g}".format(
              iteration, self.max_iterations, loss_value, l2_mean))

        # check if we should abort search if we're getting nowhere.
        if self.abort_early and \
           iteration % ((self.max_iterations // 10) or 1) == 0:
          if loss_value > prev * .9999:
            logging.debug("    Failed to make progress; stop early" )
            break
          prev = loss_value

        # adjust the best result found so far
        for e, (l2, sc, ii) in enumerate(zip(l2s, scores, nimg)):
          lab = tf.argmax(labs[e])
          comp = compare_multi(sc, lab)
          if l2 < bestl2[e] and comp:
            bestl2[e].assign(l2)
            bestscore[e].assign(tf.argmax(sc, output_type=tf.int32))
          if l2 < o_bestl2[e] and comp:
            o_bestl2[e].assign(l2)
            o_bestscore[e].assign(tf.argmax(sc, output_type=tf.int32))
            o_bestattack[e].assign(ii)

      # adjust the constant as needed
      for e in range(batch_size):
        if compare_single(bestscore[e], tf.argmax(labs[e])) and bestscore[e] != -1:
          # success, divide const by two
          upper_bound[e].assign(tf.minimum(upper_bound[e], const[e]))
          if upper_bound[e] < 1e9:
            const[e].assign((lower_bound[e] + upper_bound[e]) / 2)
        else:
          # failure, either multiply by 10 if no solution found yet
          #          or do binary search with the known upper bound
          lower_bound[e].assign(tf.maximum(lower_bound[e], const[e]))
          if upper_bound[e] < 1e9:
            const[e].assign((lower_bound[e] + upper_bound[e]) / 2)
          else:
            const[e].assign(const[e]*10)

      if logging.get_verbosity() == logging.DEBUG:
        success = tf.cast(tf.less(upper_bound, 1e9), tf.int32)
        logging.debug("  Successfully generated adversarial examples " +
                      "on {} of {} instances.".format(
                          tf.reduce_sum(success), batch_size))

        mask = tf.less(o_bestl2, 1e9)
        mean = tf.reduce_mean(tf.sqrt(tf.boolean_mask(o_bestl2, mask)))
        logging.debug("   Mean successful distortion: {:.4g}".format(mean.numpy()))

    # return the best solution found
    success = tf.cast(tf.less(upper_bound, 1e9), tf.int32)
    logging.info("  Successfully generated adversarial examples " +
                 "on {} of {} instances.".format(
                      tf.reduce_sum(success), batch_size))

    mask = tf.less(o_bestl2, 1e9)
    mean = tf.reduce_mean(tf.sqrt(tf.boolean_mask(o_bestl2, mask)))
    logging.info("   Mean successful distortion: {:.4g}".format(mean.numpy()))
    return o_bestattack.read_value()
コード例 #3
0
    # axarr[2].hist(w3, 40)
    # axarr[2].grid(True)

    plt.title('temp = ' + str(temp))
    plt.savefig(str(inst) + '_weights_temp_' + str(temp) + '.png')
    plt.show()


###################################################################################
startTime = datetime.now()

learn_rate = 3e-4
model2 = MyModel()

learning_rate = tfe.Variable(learn_rate, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
model_objects = {
    'model': MyModel(),
    'optimizer': optimizer,
    'learning_rate': learning_rate,
    'step_counter': tf.train.get_or_create_global_step(),
}

logdir = './test2'
writer = tf.contrib.summary.create_file_writer(logdir)  ## Tensorboard
global_step = tf.train.get_or_create_global_step()
writer.set_as_default()

checkpoint_dir = './ckpt'
コード例 #4
0
def run_style_transfer(content_path,
                       style_path,
                       num_iterations=1000,
                       content_weight=1e3,
                       style_weight=1e-2):
    # We don't need to (or want to) train any layers of our model, so we set their
    # trainable to false.
    model = get_model()
    for layer in model.layers:
        layer.trainable = False

    # Get the style and content feature representations (from our specified intermediate layers)
    style_features, content_features = get_feature_representations(
        model, content_path, style_path)
    gram_style_features = [
        gram_matrix(style_feature) for style_feature in style_features
    ]

    # Set initial image
    init_image = load_and_process_img(content_path)
    init_image = tfe.Variable(init_image, dtype=tf.float32)
    # Create our optimizer
    opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

    # For displaying intermediate images
    iter_count = 1

    # Store our best result
    best_loss, best_img = float('inf'), None

    # Create a nice config
    loss_weights = (style_weight, content_weight)
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features
    }

    # For displaying
    num_rows = 2
    num_cols = 5
    display_interval = num_iterations / (num_rows * num_cols)
    start_time = time.time()
    global_start = time.time()

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means

    imgs = []
    for i in range(num_iterations):
        grads, all_loss = compute_grads(cfg)
        loss, style_score, content_score = all_loss
        opt.apply_gradients([(grads, init_image)])
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)
        end_time = time.time()

        if loss < best_loss:
            # Update best loss and best image from total loss.
            best_loss = loss
            best_img = deprocess_img(init_image.numpy())

        if i % display_interval == 0:
            start_time = time.time()

            # Use the .numpy() method to get the concrete numpy array
            plot_img = init_image.numpy()
            plot_img = deprocess_img(plot_img)
            imgs.append(plot_img)
            IPython.display.clear_output(wait=True)
            IPython.display.display_png(Image.fromarray(plot_img))
            print('Iteration: {}'.format(i))
            print('Total loss: {:.4e}, '
                  'style loss: {:.4e}, '
                  'content loss: {:.4e}, '
                  'time: {:.4f}s'.format(loss, style_score, content_score,
                                         time.time() - start_time))
    print('Total time: {:.4f}s'.format(time.time() - global_start))
    IPython.display.clear_output(wait=True)
    plt.figure(figsize=(14, 4))
    for i, img in enumerate(imgs):
        plt.subplot(num_rows, num_cols, i + 1)
        plt.imshow(img)
        plt.xticks([])
        plt.yticks([])

    return best_img, best_loss
コード例 #5
0
 def __init__(self, initial_weight):
     super(ODEModel, self).__init__()
     self.Weights = tfe.Variable(initial_weight, dtype=tf.float32)
コード例 #6
0
# In order to use eager execution, `tfe.enable_eager_execution()` must be
# called at the very beginning of a TensorFlow program.
#############################
########## TO DO ############
#############################
tfe.enable_eager_execution()

# Read the data into a dataset.
data, n_samples = utils.read_birth_life_data(DATA_FILE)
dataset = tf.data.Dataset.from_tensor_slices((data[:, 0], data[:, 1]))

# Create weight and bias variables, initialized to 0.0.
#############################
########## TO DO ############
#############################
w = tfe.Variable(0.0)  # use tfe.Variable
b = tfe.Variable(0.0)


# Define the linear predictor.
def prediction(x):
    #############################
    ########## TO DO ############
    #############################
    return w * x + b


# Define loss functions of the form: L(y, y_predicted)
def squared_loss(y, y_predicted):
    #############################
    ########## TO DO ############
コード例 #7
0
import tensorflow as tf
import tensorflow.contrib.eager as tfe
from tensorflow.examples.tutorials.mnist import input_data

tfe.enable_eager_execution()

with tf.device("/cpu:0"):

    mnist = input_data.read_data_sets("./datasets/MNIST/MNIST-data",
                                      one_hot=True)

    x, y = mnist.train.next_batch(100)

    with tf.GradientTape() as tape:
        w = tfe.Variable(tf.zeros([784, 10]))
        b = tfe.Variable(tf.zeros([10]))

        logits = tf.nn.softmax(tf.matmul(x, w) + b)

        loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                       labels=y))
        grads = tape.gradient(loss, [w, b])

    optimizer = tf.train.AdamOptimizer(0.0001)

    for i in range(1000):
        optimizer.apply_gradients(
            zip(grads, [w, b]),
            global_step=tf.train.get_or_create_global_step())
        print(loss)
コード例 #8
0
def main(argv):

    CONTENT_PATH = "my_content.jpg"
    STYLE_PATH = "my_style.jpg"
    VGG_MODEL_PATH = "imagenet-vgg-verydeep-19"
    CONTENT_LAYER = 'block5_conv2'
    STYLE_LAYERS = [
        'block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1',
        'block5_conv1'
    ]
    num_iterations = 1000

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means

    #model = load_vgg_model(VGG_MODEL_PATH)
    model = get_vgg_model(STYLE_LAYERS, CONTENT_LAYER)

    content_activations, style_activations = initialize_activations(
        CONTENT_PATH, STYLE_PATH, model, STYLE_LAYERS, CONTENT_LAYER)

    # TODO - The output size must sync with content image. Also why not initialize noise to average of content
    input_image = generate_noise_image(
        reshape_and_normalize_image(scipy.misc.imread(CONTENT_PATH)), 0.4)
    input_image = tfe.Variable(input_image, dtype=tf.float32)

    optimizer = tf.train.AdamOptimizer(2.0)

    for i in range(num_iterations):
        with tf.GradientTape(persistent=True) as tape:
            tape.watch(input_image)

            input_image_vgg = model(tf.cast(input_image, tf.float32))

            J, J_content, J_style = compute_total_cost(content_activations,
                                                       style_activations,
                                                       input_image_vgg,
                                                       STYLE_LAYERS,
                                                       CONTENT_LAYER, 0.3, 0.7)

            grads = tape.gradient(J, input_image)

            optimizer.apply_gradients([(grads, input_image)])

            clipped = tf.clip_by_value(input_image, min_vals, max_vals)

            input_image.assign(clipped)

            #print("###Loss J ######" + str(J))
            #print("###Loss J ######" + str(J_style))
            #print("###Loss J ######" + str(J_content))

            # Print every 20 iteration.
            if i % 20 == 0:
                #J, Jc, Js = compute_total_cost(content_activations,style_activations,model,CONTENT_LAYER)
                print("Iteration " + str(i) + " :")
                print("total cost = " + str(J))
                print("content cost = " + str(J_content))
                print("style cost = " + str(J_style))

                # save current generated image in the "/output" directory
                save_image("output/" + str(i) + ".png", input_image)

    # save last generated image
    #generated_image = deprocess_img(input_image.numpy())
    save_image('output/generated_image.jpg', input_image)

    #print(out)

    #print(model)

    return
コード例 #9
0
def run_style_transfer(content_path,
                       style_path,
                       content_layers,
                       style_layers,
                       output_img=None,
                       num_iterations=1000,
                       content_weight=1e3,
                       style_weight=1e-2,
                       show_plots=True):
    display_num = 100
    # We don't need to (or want to) train any layers of our model, so we set their
    # trainable to false.
    model = get_model(content_layers, style_layers)
    for layer in model.layers:
        layer.trainable = False

    # Get the style and content feature representations (from our specified intermediate layers)
    style_features, content_features = get_feature_representations(
        model, content_path, style_path, len(style_layers))
    gram_style_features = [
        gram_matrix(style_feature) for style_feature in style_features
    ]

    # Set initial image
    init_image = load_and_process_img(content_path)
    init_image = tfe.Variable(init_image, dtype=tf.float32)
    # Create our optimizer
    opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

    # For displaying intermediate images
    iter_count = 1

    # Store our best result
    best_loss, best_img = float('inf'), None

    # Create a nice config
    loss_weights = (style_weight, content_weight)
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features,
        'num_content_layers': len(content_layers),
        'num_style_layers': len(style_layers),
    }

    # For displaying
    plt.figure(figsize=(14, 7))
    num_rows = (num_iterations / display_num) // 5
    start_time = time.time()
    global_start = time.time()

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means
    print('Running style transfer for %d iterations...' % num_iterations)
    for i in range(num_iterations):
        grads, all_loss = compute_grads(cfg)
        loss, style_score, content_score = all_loss
        # grads, _ = tf.clip_by_global_norm(grads, 5.0)
        opt.apply_gradients([(grads, init_image)])
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)
        end_time = time.time()

        if loss < best_loss:
            # Update best loss and best image from total loss.
            best_loss = loss
            best_img = init_image.numpy()

        if i % display_num == 0:
            print('Iteration: {:03d}:  '
                  'Total loss: {:.4e}, '
                  'style loss: {:.4e}, '
                  'content loss: {:.4e}, '
                  'time: {:.4f}s'.format(i, loss, style_score, content_score,
                                         time.time() - start_time))
            start_time = time.time()

            # Display intermediate images
            if iter_count > num_rows * 5:
                continue
            elif show_plots:
                plt.subplot(num_rows, 5, iter_count)
                # Use the .numpy() method to get the concrete numpy array
                plot_img = init_image.numpy()
                plot_img = deprocess_img(plot_img)
                plt.imshow(plot_img)
                plt.title('Iteration {}'.format(i + 1))
                iter_count += 1

    print('Total time: {:.4f}s'.format(time.time() - global_start))
    print('Best Loss: {:.1f}'.format(best_loss))

    if show_plots:
        plt.show()
        show_results(best_img, content_path, style_path, show_large_final=True)

    if output_img:
        x = deprocess_img(best_img)
        save_image(x, output_img)
コード例 #10
0
# x轴的点坐标
train_x = np.asarray([
    3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791,
    5.313, 7.997, 5.654, 9.27, 3.1
])
# y轴的点坐标
train_y = np.asarray([
    1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827,
    3.465, 1.65, 2.904, 2.42, 2.94, 1.3
])
n_samples = train_x.shape[0]
print("train_x", train_x.shape)
print("train_y", train_x.shape)

# 模型的权重
w = tfe.Variable(np.random.randn(), name="weight")
# 模型的偏置
b = tfe.Variable(np.random.randn(), name="bias")


# 线性模型
def line_model(inputs):
    return inputs * w + b


# 平方差
def mean_square(model, x, y):
    return tf.reduce_sum(tf.pow(model(x) - y, 2)) / (2 * n_samples)


# 随机梯度下降
コード例 #11
0

# Get points to estimate
points = generate_2d_point_cloud('circle', n_dots, rs=radiuses, show=0)

if video_output:
    fig = plt.figure(1)
    plt.plot(points[:, 0], points[:, 1], 'bo')
h_last = None

curr_est_points = np.zeros((0, 2))
while curr_est_points.shape[0] < n_dots_to_train:
    # Variable to train
    tmp = np.random.uniform(-4, 4, (n_dots_to_add, 2))
    tmp = np.vstack((curr_est_points, tmp))
    vr_points = tfe.Variable(tmp, dtype=tf.float32)

    print vr_points.shape

    for iter in range(n_iters):
        dPoints, = grad(points, vr_points)
        vr_points.assign_sub(dPoints * learning_rate)
        curr_est_points = np.array(vr_points.value())
        if video_output:
            plt.title((curr_est_points.shape[0], iter))
            if h_last != None:
                h_last.remove()
            h_last, = plt.plot(curr_est_points[:, 0], curr_est_points[:, 1], 'r.')
            plt.axis((-4, 4, -4, 4))
            img = figure_2_np_array(fig)
            video.append_data(img)
コード例 #12
0
    channels_image = 1
    channels_events = channels - channels_image
    folder_best_model = args.model_path
    name_best_model = os.path.join(folder_best_model, 'best')
    dataset_path = args.dataset
    loader = Loader.Loader(dataFolderPath=dataset_path, n_classes=n_classes, problemType='segmentation',
                           width=width, height=height, channels=channels_image, channels_events=channels_events)

    if not os.path.exists(folder_best_model):
        os.makedirs(folder_best_model)

    # build model and optimizer
    model = Segception.Segception_small(num_classes=n_classes, weights=None, input_shape=(None, None, channels))

    # optimizer
    learning_rate = tfe.Variable(lr)
    #optimizer = tf.train.AdamOptimizer(learning_rate)
    optimizer = RAdamOptimizer(learning_rate)

    # Init models (optional, just for get_params function)
    init_model(model, input_shape=(batch_size, width, height, channels))

    variables_to_restore = model.variables  # [x for x in model.variables if 'block1_conv1' not in x.name]
    variables_to_save = model.variables
    variables_to_optimize = model.variables

    # Init saver. can use also ckpt = tfe.Checkpoint((model=model, optimizer=optimizer,learning_rate=learning_rate, global_step=global_step)
    saver_model = tfe.Saver(var_list=variables_to_save)
    restore_model = tfe.Saver(var_list=variables_to_restore)

    # restore if model saved and show number of params
コード例 #13
0
def run_style_transfer(content_path,
                       style_path,
                       num_iterations=1000,
                       content_weight=1e3,
                       style_weight=1e-2,
                       content_layers=DEFAULT_CONTENT_LAYERS,
                       style_layers=DEFAULT_STYLE_LAYERS,
                       save_iters=DEFAULT_SAVE_ITERATIONS):
    # We don't need to (or want to) train any layers of our model, so we set their
    # trainable to false.
    model = get_model(content_layers, style_layers)
    for layer in model.layers:
        layer.trainable = False

    # Get the style and content feature representations (from our specified intermediate layers)
    style_features, content_features = get_feature_representations(
        model, content_path, style_path, len(content_layers),
        len(style_layers))
    gram_style_features = [
        gram_matrix(style_feature) for style_feature in style_features
    ]

    # Set initial image
    init_image = load_and_process_image(content_path)
    init_image = tfe.Variable(init_image, dtype=tf.float32)
    # Create our optimizer
    opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

    # For displaying intermediate images
    iter_count = 1

    # Store our best result
    best_loss, best_img = float('inf'), None

    # Create a nice config
    loss_weights = (style_weight, content_weight)
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features,
        'num_content_layers': len(content_layers),
        'num_style_layers': len(style_layers)
    }

    # For displaying
    num_rows = 2
    num_cols = 5
    display_interval = num_iterations / (num_rows * num_cols)
    start_time = time.time()
    global_start = time.time()

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means

    imgs = {}
    for i in range(1, num_iterations + 1):
        grads, all_loss = compute_grads(cfg)
        loss, style_score, content_score = all_loss
        opt.apply_gradients([(grads, init_image)])
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)
        end_time = time.time()

        if loss < best_loss:
            # Update best loss and best image from total loss.
            best_loss = loss
            best_img = deprocess_image(init_image.numpy())

        if i in save_iters:
            imgs[i] = deprocess_image(init_image.numpy())

        if i % display_interval == 0:
            start_time = time.time()

            # Use the .numpy() method to get the concrete numpy array
            print('Iteration: {}'.format(i))
            print('Total loss: {:.4e}, '
                  'style loss: {:.4e}, '
                  'content loss: {:.4e}, '
                  'time: {:.4f}s'.format(loss, style_score, content_score,
                                         time.time() - start_time))
    print('Total time: {:.4f}s'.format(time.time() - global_start))

    return best_img, best_loss, imgs
コード例 #14
0
 def __init__(self):
     #参数初始化
     self.W = tfe.Variable(1.0)
     self.b = tfe.Variable(1.0)
コード例 #15
0
def driver(content_path,
           style_path,
           num_iterations=10,
           content_weight=1e3,
           style_weight=1e-2,
           SAVE_ITERATION=False):

    # we dont want to train or mess with any layers except the ones we're interested in, so set their trinable to false

    model = get_model()
    # disable training in the model
    for layer in model.layers:
        layer.trainable = False

    # get the style and feature representations, for our interested layers (intermidieate)
    # put the pictures through the model, get the output of the layers we are interested in
    style_features, content_features = get_feature_representations(
        model, content_path, style_path)

    #turn the output in gram style feature
    gram_style_features = [
        gram_matrix(style_feature) for style_feature in style_features
    ]

    # load and process inital image, convert it
    init_image = load_and_process_img(content_path)
    # make the image into a tensor
    init_image = tfe.Variable(init_image, dtype=tf.float32)

    # create our optimizer
    opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

    # tracker for displaying intermediate images

    iter_count = 1

    # store out best result, initilize variables here
    best_loss, best_img = float('inf'), None

    loss_weights = (style_weight, content_weight)
    # To pass this information around easier
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features
    }

    # for displaying and saving
    num_rows = 2
    num_cols = 5
    display_interval = num_iterations / (num_rows * num_cols)
    start_time = time.time()
    global_start = time.time()

    # what we want to normilize the mean around, this is what the VGG networks are trained on
    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means
    imgs = []
    #computing the next seetp in gradient decent.
    grads, all_loss = compute_grads(cfg)
    loss, style_score, content_score = all_loss

    #apply adam optimization
    opt.apply_gradients([(grads, init_image)])
    #clipped is the init_image tensors clipped by min/max
    clipped = tf.clip_by_value(init_image, min_vals, max_vals)

    init_image.assign(clipped)
    # Image in tensor form -> init_image -> whats its loss -> all_loss ->
    # gradient decent -> change values -> pass it through the model -> whats its loss?
    counter = 0
    for i in tqdm(range(num_iterations - 1)):
        counter += 1
        # computing the next step in gradient decent.
        loss, style_score, content_score = all_loss
        grads, all_loss = compute_grads(cfg)

        # apply adam optimization - version of gradient decent
        opt.apply_gradients([(grads, init_image)])

        # clipped is the init_image tensors clipped by min/max
        # to allow to deprocessing
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)

        if loss < best_loss:
            # updates best loss
            best_loss = loss
            best_img = deprocess_img(init_image.numpy())
            best_img = Image.fromarray(best_img)

        if i % 15 == 0 and SAVE_ITERATION == True:
            # Use the .numpy() method to get the concrete numpy array
            plot_img = init_image.numpy()
            plot_img = deprocess_img(plot_img)
            imgs.append(plot_img)
            final_image = Image.fromarray(plot_img)
            # Save the image
            final_image.save('outputs/' + str(style_name) + '/' +
                             str(style_name) + '-' + str(counter) + '.bmp')

        if i == num_iterations - 1:
            # Use the .numpy() method to get the concrete numpy array
            plot_img = init_image.numpy()
            plot_img = deprocess_img(plot_img)
            imgs.append(plot_img)
            final_image = Image.fromarray(plot_img)
            # Save the image
            final_image.save('test.bmp')

    return best_img
コード例 #16
0
    def run_style_transfer(self,
                           content_path,
                           style_path,
                           num_iterations=100,
                           content_weight=1e3,
                           style_weight=1e-2):
        # We don't need to (or want to) train any layers of our model, so we set their
        # trainable to false.
        model = self.get_model()
        for layer in model.layers:
            layer.trainable = False

        # Get the style and content feature representations (from our specified intermediate layers)
        style_features, content_features = self.get_feature_representations(
            model, content_path, style_path)
        gram_style_features = [
            self.gram_matrix(style_feature) for style_feature in style_features
        ]

        # Set initial image
        init_image = self.load_and_process_img(content_path)
        init_image = tfe.Variable(init_image, dtype=tf.float32)
        # Create our optimizer
        opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

        # For displaying intermediate images
        iter_count = 1

        # Store our best result
        best_loss, best_img = float('inf'), None

        # Create a nice config
        loss_weights = (style_weight, content_weight)
        cfg = {
            'model': model,
            'loss_weights': loss_weights,
            'init_image': init_image,
            'gram_style_features': gram_style_features,
            'content_features': content_features
        }

        # For displaying
        num_rows = 2
        num_cols = 5
        num_iterations = int(num_iterations)

        norm_means = np.array([103.939, 116.779, 123.68])
        min_vals = -norm_means
        max_vals = 255 - norm_means

        imgs = []
        for i in range(num_iterations):
            grads, all_loss = self.compute_grads(cfg)
            loss, style_score, content_score = all_loss
            opt.apply_gradients([(grads, init_image)])
            clipped = tf.clip_by_value(init_image, min_vals, max_vals)
            init_image.assign(clipped)

            if loss < best_loss:
                # Update best loss and best image from total loss.
                best_loss = loss
                best_img = self.deprocess_img(init_image.numpy())

        return best_img, best_loss
コード例 #17
0
def run_nst(c_path, s_path, c_layers, s_layers, num_s_layers, num_c_layers, i=1000, c_weight=1e3, s_weight=1e-2):
	model = vgg_model(c_layers, s_layers)
	for layer in model.layers:
		layer.trainable = False

	c_feats, s_feats = feature_map(model, c_path, s_path, c_layers, s_layers, num_c_layers, num_s_layers)
	g_s_feats = [gram_matrix(s_feat) for s_feat in s_feats]

	base_img = process_img(c_path)
	base_img = tfe.Variable(base_img, dtype=tf.float32)

	optimizer = tf.train.AdamOptimizer(learning_rate=7, beta1=0.99, epsilon=1e-1)

	i_count = 1

	best_loss, best_img = float('inf'), None

	loss_weights = (s_weight, c_weight)

	c = {
	'model': model,
	'loss_weights': loss_weights,
	'base_img': base_img,
	'g_s_feats': g_s_feats,
	'c_feats': c_feats,
	'num_s_layers': num_s_layers,
	'num_c_layers': num_c_layers
	}

	rows = 2
	cols = 5
	interval = i / (rows*cols)
	global_start = time.time()

	norm_means = np.array([103.939, 116.779, 123.68])
	min_vals = -norm_means
	max_vals = 255 - norm_means

	imgs = []
	for j in range(i):
		start_time = time.time()
		grads, loss = compute_gradient(c)
		loss, s_score, c_score = loss
		optimizer.apply_gradients([(grads, base_img)])
		clipped = tf.clip_by_value(base_img, min_vals, max_vals)
		base_img.assign(clipped)

		if loss < best_loss:
			best_loss = loss
			best_img = deprocess_img(base_img.numpy())

		if j % interval == 0:
			plot_img = base_img.numpy()
			plot_img = deprocess_img(plot_img)
			imgs.append(plot_img)
			IPython.display.clear_output(wait=True)
			IPython.display.display_png(Image.fromarray(plot_img))
			print('Iteration: {}'.format(j))
			print('Total Loss: {:.4e}, '
				'Style Loss: {:.4e},'
				'Content Loss: {:.4e}'
				'Time: {:.4f}s'.format(loss, s_score, c_score, time.time() - start_time))
	print('Total Time: {:.4f}s'.format(time.time() - global_start))
	IPython.display.clear_output(wait=True)
	plt.figure(figsize=(14, 20))
	#Image.fromarray(best_img)
	for k, img in enumerate(imgs):
		plt.subplot(rows, cols, k+1)
		plt.imshow(img)
		plt.xticks([])
		plt.yticks([])
	return best_img, best_loss
コード例 #18
0
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
import numpy as np

X_raw = np.array([2013, 2014, 2015, 2016, 2017], dtype=np.float32)
y_raw = np.array([12000, 14000, 15000, 16500, 17500], dtype=np.float32)

X = (X_raw - X_raw.min()) / (X_raw.max() - X_raw.min())
y = (y_raw - y_raw.min()) / (y_raw.max() - y_raw.min())

X = tf.constant(X)
y = tf.constant(y)

a = tfe.Variable(0., name='a')
b = tfe.Variable(0., name='b')

num_epoch = 10000
learning_rate = 1e-3
for e in range(num_epoch):
    # 前向传播
    y_pred = a * X + b
    loss = 0.5 * tf.reduce_sum(tf.square(y_pred - y)) # loss = 0.5 * np.sum(np.square(a * X + b - y))

    # 反向传播,手动计算变量(模型参数)的梯度
    grad_a = tf.reduce_sum((y_pred - y) * X)
    grad_b = tf.reduce_sum(y_pred - y)

    # 更新参数
    a, b = a - learning_rate * grad_a, b - learning_rate * grad_b
コード例 #19
0
    def run_style_transfer(self,
                           content_path,
                           style_path,
                           content_map_path="",
                           style_map_path="",
                           num_iterations=100,
                           content_weight=1e4,
                           style_weight=1e-2,
                           trans_weight=0):
        # We don't need to (or want to) train any layers of our model, so we set their
        # trainable to false.
        model = self.get_model()
        for layer in model.layers:
            layer.trainable = False

        # Get the style and content feature representations (from our specified intermediate layers)
        style_features, content_features = self.get_feature_representations(
            model, content_path, style_path)
        style_map_features, _ = self.get_feature_representations(
            model, content_map_path, style_map_path)
        content_map_features, _ = self.get_feature_representations(
            model, style_map_path, content_map_path)

        size = 5
        stride = 4
        base_style_patches = []
        i = 0
        style_img = load_img(style_path)

        for style_feat_img, style_map_img in zip(style_features,
                                                 style_map_features):
            print(style_feat_img.shape)
            print(style_map_img.shape)
            style_feat_img = tf.concat([style_feat_img, style_map_img], -1)
            print(style_feat_img.shape)

            li = tf.squeeze(
                tf.extract_image_patches(tf.expand_dims(style_feat_img,
                                                        axis=0),
                                         ksizes=[1, size, size, 1],
                                         strides=[1, stride, stride, 1],
                                         rates=[1, 1, 1, 1],
                                         padding='VALID'), 0)
            li = tf.reshape(
                li, [((style_feat_img.shape[0] - size) // stride + 1) *
                     ((style_feat_img.shape[1] - size) // stride + 1), -1])
            # li = tf.reshape(li, [(style_feat_img.shape[0] - 2) * (style_feat_img.shape[1] - 2), -1])
            base_style_patches.append(li)

            # print( i,len( base_style_patches[i] ), base_style_patches[i][0] )
            i += 1
        # print(len(base_style_patches))

        # Set initial image
        init_image = load_noise_img(load_and_process_img(content_path))
        init_image = load_and_process_img(content_path)

        init_image = tfe.Variable(init_image, dtype=tf.float32)
        # Create our optimizer
        opt = tf.train.AdamOptimizer(learning_rate=50,
                                     beta1=0.99,
                                     epsilon=1e-1)

        # For displaying intermediate images
        iter_count = 1

        # Store our best result
        best_loss, best_img = float('inf'), None

        # Create a nice config
        loss_weights = (style_weight, content_weight, trans_weight)
        cfg = {
            'model': model,
            'loss_weights': loss_weights,
            'init_image': init_image,
            'base_style_patches': base_style_patches,
            'content_features': content_features,
            'content_map_features': content_map_features
        }

        # For displaying
        num_rows = 2
        num_cols = 10
        display_interval = num_iterations / (num_rows * num_cols)
        start_time = time.time()
        global_start = time.time()

        norm_means = np.array([103.939, 116.779, 123.68])
        min_vals = -norm_means
        max_vals = 255 - norm_means

        imgs = []
        for i in range(num_iterations):
            print("himmat rakho")
            grads, all_loss = self.compute_grads(cfg)
            print("gradient aega")
            loss, style_score, content_score, trans_score = all_loss
            opt.apply_gradients([(grads, init_image)])

            print("gradient agya")
            clipped = tf.clip_by_value(init_image, min_vals, max_vals)
            # print("II 1",init_image)
            init_image.assign(clipped)
            # print("II 2",cfg['init_image'])
            end_time = time.time()

            if loss < best_loss:
                # Update best loss and best image from total loss.
                best_loss = loss
                best_img = deprocess_img(init_image.numpy())

            if i % 1 == 0:
                start_time = time.time()

                # Use the .numpy() method to get the concrete numpy array
                plot_img = init_image.numpy()
                plot_img = deprocess_img(plot_img)

                if i % display_interval == 0:
                    imgs.append(plot_img)

                print('Iteration: {}'.format(i))
                print('Total loss: {:.4e}, '
                      'style loss: {:.4e}, '
                      'content loss: {:.4e}, '
                      'trans loss: {:.4e}, '
                      'time: {:.4f}s'.format(loss, style_score, content_score,
                                             trans_score,
                                             time.time() - start_time))

        print('Total time: {:.4f}s'.format(time.time() - global_start))
        plt.figure(figsize=(14, 4))
        for i, img in enumerate(imgs):
            plt.subplot(num_rows, num_cols, i + 1)
            plt.imshow(img)
            plt.xticks([])
            plt.yticks([])

        plt.savefig(self.results + content_path + '_inter.jpg')

        return best_img, best_loss
コード例 #20
0
ファイル: transfer.py プロジェクト: mdatsev/spaceimage
def run_style_transfer(content_path,
                       style_path,
                       num_iterations=1000,
                       content_weight=1e3,
                       style_weight=1e-2):

    model = get_model()
    for layer in model.layers:
        layer.trainable = False

    style_features, content_features = get_feature_representations(
        model, content_path, style_path)
    gram_style_features = [
        gram_matrix(style_feature) for style_feature in style_features
    ]

    init_image = load_and_process_img(content_path)
    init_image = tfe.Variable(init_image, dtype=tf.float32)

    opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)

    iter_count = 1

    best_loss, best_img = float('inf'), None

    loss_weights = (style_weight, content_weight)
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features
    }

    num_rows = 2
    num_cols = 5
    display_interval = num_iterations / (num_rows * num_cols)
    start_time = time.time()
    global_start = time.time()

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means

    for i in range(num_iterations):
        grads, all_loss = compute_grads(cfg)
        loss, style_score, content_score = all_loss
        opt.apply_gradients([(grads, init_image)])
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)
        end_time = time.time()

        if loss < best_loss:

            best_loss = loss
            best_img = deprocess_img(init_image.numpy())

        if i % display_interval == 0:
            start_time = time.time()

            print('Iteration: {}'.format(i))
            print('Total loss: {:.4e}, '
                  'style loss: {:.4e}, '
                  'content loss: {:.4e}, '
                  'time: {:.4f}s'.format(loss, style_score, content_score,
                                         time.time() - start_time))
            print('Total time: {:.4f}s'.format(time.time() - global_start))

    return best_img, best_loss
コード例 #21
0
    parser.add_argument('--state-type',
                        choices=['learned-distribution', 'zero'],
                        required=True)
    parser.add_argument('--seed', default=42, type=int)
    args = parser.parse_args()

    tf.enable_eager_execution()
    tf.set_random_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    job_dir = os.path.join(args.job_dir, 'lcd', args.state_type,
                           'seed_{}'.format(args.seed))
    print(job_dir)

    global_step = tfe.Variable(0, dtype=tf.int64)
    k = 25
    num_epochs = 65
    num_train_samples = 1000
    num_test_samples = 500
    num_generation_samples = 10
    train_fn_periods = [.5, 1.5, 2.5, 3.5, 4.5]
    test_fn_periods = [1., 2., 3., 4.]
    batch_size = 128
    train_dataset, test_dataset, min_target, max_target = create_datasets(
        [(create_dynamics_fn(p), p) for p in train_fn_periods],
        [(create_dynamics_fn(p), p) for p in test_fn_periods],
        num_train_samples, num_test_samples, k, [2.], [4.])
    train_dataset = train_dataset.batch(batch_size)
    train_dataset = train_dataset.shuffle(num_train_samples // batch_size)
    test_states, test_periods, test_targets = test_dataset
コード例 #22
0
## Gradients - Automatic differentiation is built into eager execution
# Under the hood ...
#    - Operations are recorded on a tap
#    - The tape is Played back to compute gradients
#         - This is reverse-mode differentiation (backpropagation)


# Eg: 01
def square(x):
    return x**2


grad = tfe.gradients_function(square)  # differentiation w.r.t input of square

print(square(3.))
print(grad(3.))

# Eg: 02
x = tfe.Variable(2.0)  # use when eager execution is enabled


def loss(y):
    return (y - x**2)**2


grad = tfe.implicit_gradients(
    loss)  # Differentiation w.r.t variables used to compute loss

print(loss(7.))
print(grad(7.))  # [gradient w.r.t x, x]
コード例 #23
0
        num = tf.constant(num)
        if int(num % 3) == 0 and int(num % 5) == 0:
            print('FizzBuzz')
        elif int(num % 3) == 0:
            print('Fizz')
        elif int(num % 5) == 0:
            print('Buzz')
        else:
            print(num)
        counter += 1
    return counter


print(fizzbuzz(15))

w = tfe.Variable([[1.0]])
with tf.GradientTape() as tape:
    loss = w * w
grads = tape.gradient(loss, w)
print(grads)

# Training model process as follows:
# first, create dataset
# second, create keras model
# third, foreach single data
#           with tf.gradientType() as tape:
#               logits = model(input),
#               loss = cal(logits, labels)
#           grads = tape.gradient(loss, variables)
#           optimizer.apply_gradient(zip(grads, variables), global_step=...)
コード例 #24
0
train_X = [
    3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791,
    5.313, 7.997, 5.654, 9.27, 3.1
]
train_Y = [
    1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827,
    3.465, 1.65, 2.904, 2.42, 2.94, 1.3
]

n_samples = len(train_X)

# Parameters
learning_rate = 0.01
display_step = 100
num_steps = 1000

W = tfe.Variable(np.random.randn())
b = tfe.Variable(np.random.randn())


def linear_regression(inputs):
    return inputs * W + b


def mean_square_fn(model_fn, inputs, labels):
    return tf.reduce_sum(tf.pow(model_fn(inputs) - labels, 2))


optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
コード例 #25
0
 def __init__(self):
     super(ODEModel_pre, self).__init__()
     self.Weights = tfe.Variable(
         tf.random_normal([num_param // 2, 2], dtype=tf.float32) * 0.01,
         dtype=tf.float32)
コード例 #26
0
 def __init__(self, loc, scale):
     super(Normalizer, self).__init__()
     self.loc = tfe.Variable(loc, trainable=False)
     self.scale = tfe.Variable(scale, trainable=False)
コード例 #27
0
    def __init__(
        self,
        ds,
        num_units=64,
        layers=None,
        dropout_prob=None,
        apply_batchnorm=True,
        activation_fn="relu",
        apply_dropout=True,
        l2_regularizer=0.0,
    ):
        super(NeuralFM, self).__init__()
        self._num_weights = ds.num_features_one_hot
        self._num_units = num_units
        self._num_features = ds.num_features

        if layers and dropout_prob and apply_dropout:
            assert len(layers) + 1 == len(dropout_prob)

        if layers is None:
            layers = [64]

        if dropout_prob is None:
            dropout_prob = [0.8, 0.5]

        self.dropout_prob = dropout_prob

        self.apply_batchnorm = apply_batchnorm
        self.apply_dropout = apply_dropout
        self.activation = activation_fn
        self.dense_layers = [
            tf.keras.layers.Dense(units, activation=self.activation)
            for units in layers
        ]
        self.final_dense_layer = tf.keras.layers.Dense(1)

        if self.apply_batchnorm:
            self.batch_norm_layer = tf.keras.layers.BatchNormalization()
            self.dense_batch_norm = [
                tf.keras.layers.BatchNormalization() for _ in layers
            ]

        if self.apply_dropout:
            self.fm_dropout = tf.keras.layers.Dropout(self.dropout_prob[-1])
            self.dense_dropout = [
                tf.keras.layers.Dropout(self.dropout_prob[i])
                for i in range(len(dropout_prob) - 1)
            ]

        self.w = tf.keras.layers.Embedding(
            self._num_weights,
            num_units,
            input_length=self._num_features,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=0.0, stddev=0.01),
            embeddings_regularizer=tf.keras.regularizers.l2(l2_regularizer),
        )
        self.w0 = tf.keras.layers.Embedding(
            self._num_weights,
            1,
            input_length=self._num_features,
            embeddings_initializer="zeros",
        )
        self.bias = tfe.Variable(tf.constant(0.0))
コード例 #28
0
# In order to use eager execution, `tfe.enable_eager_execution()` must be
# called at the very beginning of a TensorFlow program.
tf.enable_eager_execution()
#############################
########## TO DO ############
#############################

# Read the data into a dataset.
data, n_samples = utils.read_birth_life_data(DATA_FILE)
dataset = tf.data.Dataset.from_tensor_slices((data[:, 0], data[:, 1]))

# Create weight and bias variables, initialized to 0.0.
#############################
########## TO DO ############
#############################
w = tfe.Variable(0.0)
b = tfe.Variable(0.0)


# Define the linear predictor.
def prediction(x):
    return x * w + b
    #############################
    ########## TO DO ############
    #############################


# Define loss functions of the form: L(y, y_predicted)
def squared_loss(y, y_predicted):
    return (y - y_predicted)**2
    #############################
コード例 #29
0
ファイル: main.py プロジェクト: DACUS1995/Style-Transfer
def transfer_style(content_image,
                   style_image,
                   learning_rate=5,
                   content_weight=1e3,
                   style_weight=1e-2,
                   num_iterations=100):
    model = get_intermediate_layers_model({
        "style_layers": STYLE_LAYERS,
        "content_layers": CONTENT_LAYERS
    })

    # Get intermediate representations for the content image and the style image
    content_image = utils.preprocess_image(content_image)
    style_image = utils.preprocess_image(style_image)

    content_representations = model(content_image)
    style_representations = model(style_image)

    content_representations = [
        layer[0] for layer in content_representations[len(STYLE_LAYERS):]
    ]
    style_representations_gram_matrix = [
        utils.compute_gram_matrix(layer[0])
        for layer in style_representations[:len(STYLE_LAYERS)]
    ]

    # Create the generated image, as a trick use as base the content image
    generated_image = np.copy(content_image)
    generated_image = tfe.Variable(generated_image, dtype=tf.float32)

    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                       beta1=0.99,
                                       epsilon=1e-1)
    loss_weights = (style_weight, content_weight)
    best_loss, best_img = float('inf'), None

    # For displaying grid
    num_rows = 2
    num_cols = 5

    display_interval = num_iterations / (num_rows * num_cols)
    start_time = time.time()
    global_start = time.time()

    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means

    imgs = []
    for i in range(num_iterations):
        grads, all_loss = compute_grads(model,
                                        style_representations_gram_matrix,
                                        content_representations,
                                        generated_image, loss_weights)

        loss, style_score, content_score = all_loss
        optimizer.apply_gradients([(grads, generated_image)])
        clipped = tf.clip_by_value(generated_image, min_vals, max_vals)
        generated_image.assign(clipped)

        # Save the image with the best score(smallest total loss)
        if loss < best_loss:
            best_loss = loss
            best_img = utils.prepare_image_visualization(
                generated_image.numpy())

        if i % display_interval == 0:
            start_time = time.time()

            plot_img = generated_image.numpy()
            plot_img = utils.prepare_image_visualization(plot_img)
            imgs.append(plot_img)
            IPython.display.clear_output(wait=True)
            IPython.display.display_png(Image.fromarray(plot_img))
            print(f'Iteration: {i}')
            print(
                f'Total loss: {loss}, style loss: {style_score}, content loss: {content_score}, time: {time.time() - start_time}s'
            )
    print(f'Total time: {time.time() - global_start}s')

    IPython.display.clear_output(wait=True)
    plt.figure(figsize=(14, 4))
    for i, img in enumerate(imgs):
        plt.subplot(num_rows, num_cols, i + 1)
        plt.imshow(img)
        plt.xticks([])
        plt.yticks([])

    return best_img, best_loss
コード例 #30
0
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import matplotlib.pyplot as plt

import utils

DATA_FILE = 'data/birth_life_2010.txt'

# In order to use eager execution, `tfe.enable_eager_execution()` must be
# called at the very beginning of a TensorFlow program.
tfe.enable_eager_execution()

data, n_samples = utils.read_birth_life_data(DATA_FILE)
dataset = tf.data.Dataset.from_tensor_slices((data[:, 0], data[:, 1]))

w = tfe.Variable(0.0, name="weight", dtype=tf.float32)
b = tfe.Variable(0.0, name="bias", dtype=tf.float32)


def prediction(x):
    Y_predicted = x * w + b
    return Y_predicted


def squared_loss(y, Y_predicted):
    loss = tf.square(y - Y_predicted, name="loss")
    return loss


def hubber_loss(labels, predictions, delta=1.0):
    #    residual = tf.abs(predictions-labels)