def test_spirals_replicable(self): """Test if the data generation is replicable with a specified `seed` Tests: - return the same value if raised with the same seed - return different values if noise or seed is different """ seed = 42 noise = 0.1 modes = ('archimedes', 'bernoulli', 'fermat') for mode in modes: spir0 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed) spir1 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed) np.testing.assert_array_equal(spir0.data, spir1.data) np.testing.assert_array_equal(spir0.target, spir1.target) spir1 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed + 1) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.data, spir1.data) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.target, spir1.target) spir1 = synthetic.spirals(n_samples=1000, noise=noise / 2., seed=seed) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.data, spir1.data)
def test_spirals(self): """Test if the circles are generated correctly Tests: - if mode is unknown, ValueError is raised - return type is `Dataset` - returned `data` shape is (n_samples, n_features) - returned `target` shape is (n_samples,) - set of unique classes range is [0, n_classes) """ self.assertRaises(ValueError, synthetic.spirals, mode='_unknown_mode_spiral_') n_samples = 100 modes = ('archimedes', 'bernoulli', 'fermat') for mode in modes: spir = synthetic.spirals(n_samples = n_samples, noise = None, mode = mode) self.assertIsInstance(spir, datasets.base.Dataset) self.assertTupleEqual(spir.data.shape, (n_samples,2)) self.assertTupleEqual(spir.target.shape, (n_samples,)) self.assertSetEqual(set(spir.target), set(range(2)))
def test_spirals(self): """Test if the circles are generated correctly Tests: - if mode is unknown, ValueError is raised - return type is `Dataset` - returned `data` shape is (n_samples, n_features) - returned `target` shape is (n_samples,) - set of unique classes range is [0, n_classes) """ self.assertRaises(ValueError, synthetic.spirals, mode='_unknown_mode_spiral_') n_samples = 100 modes = ('archimedes', 'bernoulli', 'fermat') for mode in modes: spir = synthetic.spirals(n_samples=n_samples, noise=None, mode=mode) self.assertIsInstance(spir, datasets.base.Dataset) self.assertTupleEqual(spir.data.shape, (n_samples, 2)) self.assertTupleEqual(spir.target.shape, (n_samples, )) self.assertSetEqual(set(spir.target), set(range(2)))
def test_spirals(self): synthetic.spirals(3)