コード例 #1
0
 def test_non_square_operator_raises(self):
     operators = [
         linalg.LinearOperatorFullMatrix(rng.rand(3, 4), is_square=False),
         linalg.LinearOperatorFullMatrix(rng.rand(3, 3))
     ]
     with self.assertRaisesRegexp(ValueError, "square matrices"):
         block_diag.LinearOperatorBlockDiag(operators)
コード例 #2
0
 def test_different_dtypes_raises(self):
   operators = [
       linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3)),
       linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3).astype(np.float32))
   ]
   with self.assertRaisesRegexp(TypeError, "same dtype"):
     block_diag.LinearOperatorBlockDiag(operators)
コード例 #3
0
    def _operator_and_mat_and_feed_dict(self, build_info, dtype,
                                        use_placeholder):
        shape = list(build_info.shape)
        expected_blocks = (build_info.__dict__["blocks"]
                           if "blocks" in build_info.__dict__ else [shape])
        diag_matrices = [
            linear_operator_test_util.random_uniform(shape=block_shape[:-1],
                                                     minval=1.,
                                                     maxval=20.,
                                                     dtype=dtype)
            for block_shape in expected_blocks
        ]

        if use_placeholder:
            diag_matrices_ph = [
                array_ops.placeholder(dtype=dtype) for _ in expected_blocks
            ]
            diag_matrices = self.evaluate(diag_matrices)
            # Evaluate here because (i) you cannot feed a tensor, and (ii)
            # values are random and we want the same value used for both mat and
            # feed_dict.
            operator = block_diag.LinearOperatorBlockDiag(
                [linalg.LinearOperatorDiag(m_ph) for m_ph in diag_matrices_ph])
            feed_dict = {
                m_ph: m
                for (m_ph, m) in zip(diag_matrices_ph, diag_matrices)
            }
        else:
            operator = block_diag.LinearOperatorBlockDiag(
                [linalg.LinearOperatorDiag(m) for m in diag_matrices])
            feed_dict = None
            # Should be auto-set.
            self.assertTrue(operator.is_square)

        # Broadcast the shapes.
        expected_shape = list(build_info.shape)

        matrices = linear_operator_util.broadcast_matrix_batch_dims([
            array_ops.matrix_diag(diag_block) for diag_block in diag_matrices
        ])

        block_diag_dense = _block_diag_dense(expected_shape, matrices)
        if not use_placeholder:
            block_diag_dense.set_shape(
                expected_shape[:-2] + [expected_shape[-1], expected_shape[-1]])

        return operator, block_diag_dense, feed_dict
コード例 #4
0
    def _operator_and_mat_and_feed_dict(self, build_info, dtype,
                                        use_placeholder):
        shape = list(build_info.shape)
        expected_blocks = (build_info.__dict__["blocks"]
                           if "blocks" in build_info.__dict__ else [shape])
        matrices = [
            linear_operator_test_util.random_positive_definite_matrix(
                block_shape, dtype, force_well_conditioned=True)
            for block_shape in expected_blocks
        ]

        if use_placeholder:
            matrices_ph = [
                array_ops.placeholder(dtype=dtype) for _ in expected_blocks
            ]
            # Evaluate here because (i) you cannot feed a tensor, and (ii)
            # values are random and we want the same value used for both mat and
            # feed_dict.
            matrices = self.evaluate(matrices)
            operator = block_diag.LinearOperatorBlockDiag([
                linalg.LinearOperatorFullMatrix(m_ph, is_square=True)
                for m_ph in matrices_ph
            ],
                                                          is_square=True)
            feed_dict = {m_ph: m for (m_ph, m) in zip(matrices_ph, matrices)}
        else:
            operator = block_diag.LinearOperatorBlockDiag([
                linalg.LinearOperatorFullMatrix(m, is_square=True)
                for m in matrices
            ])
            feed_dict = None
            # Should be auto-set.
            self.assertTrue(operator.is_square)

        # Broadcast the shapes.
        expected_shape = list(build_info.shape)

        matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices)

        block_diag_dense = _block_diag_dense(expected_shape, matrices)

        if not use_placeholder:
            block_diag_dense.set_shape(
                expected_shape[:-2] + [expected_shape[-1], expected_shape[-1]])

        return operator, block_diag_dense, feed_dict
コード例 #5
0
    def test_name(self):
        matrix = [[11., 0.], [1., 8.]]
        operator_1 = linalg.LinearOperatorFullMatrix(matrix, name="left")
        operator_2 = linalg.LinearOperatorFullMatrix(matrix, name="right")

        operator = block_diag.LinearOperatorBlockDiag([operator_1, operator_2])

        self.assertEqual("left_ds_right", operator.name)
コード例 #6
0
  def test_is_non_singular_auto_set(self):
    # Matrix with two positive eigenvalues, 11 and 8.
    # The matrix values do not effect auto-setting of the flags.
    matrix = [[11., 0.], [1., 8.]]
    operator_1 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)
    operator_2 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)

    operator = block_diag.LinearOperatorBlockDiag(
        [operator_1, operator_2],
        is_positive_definite=False,  # No reason it HAS to be False...
        is_non_singular=None)
    self.assertFalse(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)

    with self.assertRaisesRegexp(ValueError, "always non-singular"):
      block_diag.LinearOperatorBlockDiag(
          [operator_1, operator_2], is_non_singular=False)
コード例 #7
0
 def test_is_x_flags(self):
     # Matrix with two positive eigenvalues, 1, and 1.
     # The matrix values do not effect auto-setting of the flags.
     matrix = [[1., 0.], [1., 1.]]
     operator = block_diag.LinearOperatorBlockDiag(
         [linalg.LinearOperatorFullMatrix(matrix)],
         is_positive_definite=True,
         is_non_singular=True,
         is_self_adjoint=False)
     self.assertTrue(operator.is_positive_definite)
     self.assertTrue(operator.is_non_singular)
     self.assertFalse(operator.is_self_adjoint)
コード例 #8
0
 def test_empty_operators_raises(self):
     with self.assertRaisesRegexp(ValueError, "non-empty"):
         block_diag.LinearOperatorBlockDiag([])