def testStepWithInferenceHelperMultilabel(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size) * start_token, vocabulary_size) # The sample function samples independent bernoullis from the logits. sample_fn = ( lambda x: helper_py.bernoulli_sample(logits=x, dtype=dtypes.bool)) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = math_ops.to_float end_fn = lambda sample_ids: sample_ids[:, end_token] with self.session(use_gpu=True) as sess: with variable_scope.variable_scope( "testStepWithInferenceHelper", initializer=init_ops.constant_initializer(0.01)): cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.InferenceHelper( sample_fn, sample_shape=[cell_depth], sample_dtype=dtypes.bool, start_inputs=start_inputs, end_fn=end_fn, next_inputs_fn=next_inputs_fn) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, cell_depth), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.bool), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = sample_ids[:, end_token] expected_step_next_inputs = sample_ids.astype(np.float32) self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"])
def testStepWithInferenceHelperCategorical(self): batch_size = 5 vocabulary_size = 7 cell_depth = vocabulary_size start_token = 0 end_token = 6 start_inputs = array_ops.one_hot( np.ones(batch_size) * start_token, vocabulary_size) # The sample function samples categorically from the logits. sample_fn = lambda x: helper_py.categorical_sample(logits=x) # The next inputs are a one-hot encoding of the sampled labels. next_inputs_fn = ( lambda x: array_ops.one_hot(x, vocabulary_size, dtype=dtypes.float32)) end_fn = lambda sample_ids: math_ops.equal(sample_ids, end_token) with self.session(use_gpu=True) as sess: with variable_scope.variable_scope( "testStepWithInferenceHelper", initializer=init_ops.constant_initializer(0.01)): cell = rnn_cell.LSTMCell(vocabulary_size) helper = helper_py.InferenceHelper( sample_fn, sample_shape=(), sample_dtype=dtypes.int32, start_inputs=start_inputs, end_fn=end_fn, next_inputs_fn=next_inputs_fn) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(cell_depth, tensor_shape.TensorShape([])), output_size) self.assertEqual( basic_decoder.BasicDecoderOutput(dtypes.float32, dtypes.int32), output_dtype) (first_finished, first_inputs, first_state) = my_decoder.initialize() (step_outputs, step_state, step_next_inputs, step_finished) = my_decoder.step( constant_op.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertTrue(isinstance(first_state, rnn_cell.LSTMStateTuple)) self.assertTrue(isinstance(step_state, rnn_cell.LSTMStateTuple)) self.assertTrue( isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, cell_depth), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), first_state[1].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[0].get_shape()) self.assertEqual((batch_size, cell_depth), step_state[1].get_shape()) sess.run(variables.global_variables_initializer()) sess_results = sess.run({ "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished }) sample_ids = sess_results["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) expected_step_finished = (sample_ids == end_token) expected_step_next_inputs = np.zeros((batch_size, vocabulary_size)) expected_step_next_inputs[np.arange(batch_size), sample_ids] = 1.0 self.assertAllEqual(expected_step_finished, sess_results["step_finished"]) self.assertAllEqual(expected_step_next_inputs, sess_results["step_next_inputs"])