'image_feature_size', 196, 'Multiplication of width and height of image feature\'s dimension, e.g 14x14=196 in the original paper.' ) flags.DEFINE_integer( 'image_feature_depth', 1024, 'Depth dimension of image feature, e.g 512 if you extract features at conv-5 of VGG-16 model.' ) flags.DEFINE_integer('lstm_hidden_size', 1536, 'Hidden layer size for LSTM cell.') flags.DEFINE_integer('time_steps', 31, 'Number of time steps to be iterating through.') flags.DEFINE_integer('embed_dim', 512, 'Embedding space size for embedding tokens.') flags.DEFINE_integer('beam_size', 3, 'Beam size for inference phase.') flags.DEFINE_float('dropout', 0.5, 'Dropout portion.') flags.DEFINE_boolean('prev2out', True, 'Link previous hidden state to output.') flags.DEFINE_boolean('ctx2out', True, 'Link context features to output.') flags.DEFINE_boolean( 'enable_selector', True, 'Enable selector to determine how much important the image context is at every time step.' ) """Training parameters""" flags.DEFINE_string('optimizer', 'rmsprop', 'Optimizer used to update model\'s weights.') flags.DEFINE_float('learning_rate', 0.0001, 'Initial learning rate.') flags.DEFINE_integer('num_epochs', 10, 'Number of epochs.') flags.DEFINE_integer('batch_size', 128, 'Number of examples per mini-batch.') flags.DEFINE_integer('snapshot_steps', 10, 'Logging every snapshot_steps steps.') flags.DEFINE_integer( 'eval_steps', 100,
'Vocabulary is made of vocab_size most frequent words in the dataset. ' + 'Leave it to default value means not using it.') flags.DEFINE_string( 'model_name', 'resnet', 'Model used to extract features of images.' + 'It should be vgg or resnet.') flags.DEFINE_string( 'model_num_layers', '101', 'Number of layers for model\'s architecture.' + 'If model_name is vgg, this variable can take values of 16 or 19.' + 'If model_name is resnet, this variable can take values of 50, 101 or 152.' ) flags.DEFINE_boolean( 'use_tf', False, 'Whether to use Tensorflow slim model to extract features of images or use pytorch.' + 'Using Pytorch will be faster but it will keep you from finetuning the extracting model.' + 'Default is set to use Pytorch models.') flags.DEFINE_string( 'model_ckpt', '', 'Model checkpoint to load model\'s weights to extract images.' + 'Only use this variable when you use tensorflow model.') def _process_caption_data(phase, caption_file=None, image_dir=None, max_length=None): if phase == 'test' or phase == 'val': if phase == 'val':
import numpy import os import sys import tensorflow as tf from tensorflow import flags from third_party.node2vec import node2vec flags.DEFINE_string('input', '', 'Path to edge-list textfile. Required unless ' '--only_simulate_walks is set.') flags.DEFINE_boolean('only_simulate_walks', False, 'If set, train.txt.npy will be read from --output_dir, ' 'random walks will be simulated, out their output will be ' 'written to --output_dir') flags.DEFINE_string('output_dir', '', 'Directory where training files will be written.') flags.DEFINE_boolean('directed', False, 'Must be set if graph is directed.') flags.DEFINE_boolean('partition', True, 'If set (default), separates a test split, containing ' 'half of the edges. In which case, train graph will be ' 'connected.') flags.DEFINE_integer('num_walks', 5, 'Number of walks per node.') flags.DEFINE_integer('walk_length', 40, 'Length of each walk. Total number of pairs will be ' 'O(walk_length * num_walks * num nodes * context^2)') flags.DEFINE_integer('context', 3, 'Size of context from each side (right and left). If '
from stable_baselines.common.vec_env import DummyVecEnv import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from eval_model import evaluate import csv import utils from baselines.L2SP.model import PPO2L2SP import ipdb FLAGS = flags.FLAGS flags.DEFINE_integer("timesteps", 256000, "# timesteps to train") flags.DEFINE_string("experiment_dir", "output/updated_gridworld_continuous_L2SP", "Name of experiment") flags.DEFINE_string("experiment_name", "B0R_B0L_L2SP", "Name of experiment") flags.DEFINE_boolean("is_save", True, "Saves and logs experiment data if True") flags.DEFINE_integer("eval_save_period", 1, "how often we save state for eval") # fine flags.DEFINE_integer("num_envs", 1, "number of envs") flags.DEFINE_integer("seed", 10, "random seed") flags.DEFINE_string("target_env", "", "Name of target environment") flags.DEFINE_string("source_env", "", "Name of source environment") flags.DEFINE_integer("bs", 1, "barrier_size") def find_best(dir_name): def compare(item): return item[0] model_list = [] for file_name in os.listdir(dir_name): if '.pkl' in file_name and ('final' not in file_name) and ('best_model' not in file_name):
"Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_query", 4, "max document length of left input") flags.DEFINE_integer("max_len_document", 50, "max document length of right input") flags.DEFINE_string("loss", "point_wise", "loss function (default:point_wise)") flags.DEFINE_integer('extend_feature_dim', 10, 'overlap_feature_dim') # Training parameters flags.DEFINE_integer("batch_size", 20, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epochs", 100, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_boolean('overlap_needed', True, "is overlap used") flags.DEFINE_boolean('position_needed', False, 'is position used') flags.DEFINE_boolean('dns', 'False', 'whether use dns or not') flags.DEFINE_string('data', 'clueweb09_title', 'data set') flags.DEFINE_string('CNN_type', 'ircnn', 'data set') flags.DEFINE_float('sample_train', 1, 'sampe my train data') flags.DEFINE_boolean( 'fresh', True,
"The directory to load the model files from. " "The tensorboard metrics files are also saved to this " "directory.") flags.DEFINE_string("checkpoint_file", "", "e.g. model.ckpt-170820") flags.DEFINE_string( "eval_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") # Other flags. flags.DEFINE_integer("batch_size", 1024, "How many examples to process per batch.") flags.DEFINE_integer("num_readers", 8, "How many threads to use for reading input files.") flags.DEFINE_boolean("run_once", False, "Whether to run eval only once.") flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.") flags.DEFINE_integer("ensemble_num", 1, "") flags.DEFINE_multi_integer( "netvlad_cluster_size", 64, "Number of units in the NetVLAD cluster layer.") flags.DEFINE_multi_integer("netvlad_hidden_size", 1024, "Number of units in the NetVLAD hidden layer.") flags.DEFINE_multi_float("ensemble_wts", 1, '') flags.DEFINE_boolean(
"L2 regularization lambda (default: 0.0)") # Training parameters flags.DEFINE_integer("batch_size", 32, "Batch Size (default: 64)") flags.DEFINE_integer("num_epochs", 10, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)") # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") flags.DEFINE_boolean( 'use_allow_growth', True, 'use Allow Growth flag which will allocate only required amount of GPU memory and prevent full allocation of available GPU memory' ) none = None #FLAGS = tf.flags.FLAGS #FLAGS._parse_flags() FLAGS = tf.flags.FLAGS import sys FLAGS(sys.argv) print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()):
from data import generate import h5py as h5 import numpy as np import time #reproduction of HAN tf.logging.set_verbosity(tf.logging.INFO) FLAGS = flags.FLAGS flags.DEFINE_string("data_dir",'data/yelp-2013', 'directory containing train, val and test h5') flags.DEFINE_string('checkpoint_dir','checkpoint','directory to save the best model saved as checkpoint_dir/model.chkpt') flags.DEFINE_string('restore_checkpoint',None,'restore to a state; if None train from scratch default : ') flags.DEFINE_boolean('gpu',True,'use --nogpu to disable gpu') flags.DEFINE_integer('epoch',2,'epoch : default 2s') flags.DEFINE_integer('batchsize',32,'batchsize: default 32') #network parameters flags.DEFINE_float('hidden_dim',100 ,'GRU hidden dimension : default 100') #hyper params flags.DEFINE_float('lr',1e-3,'Learning rate : default 1e-3') class Attention(): def __init__(self, input, mask, scope ='A0'): assert input.get_shape().as_list()[:-1] == mask.get_shape().as_list() and len(mask.get_shape().as_list()) == 2 _, steps, embed_dim = input.get_shape().as_list()
#!/usr/bin/env python # -*- coding: utf-8 -*- import importlib from tensorflow import flags from data_process import get_data # model relation flags.DEFINE_string('classifier', 'bidirectional_lstm.BiLSTM', "path of the Class for the classifier") flags.DEFINE_integer('nb_epoch', 50, "number of epoch") flags.DEFINE_integer('embed_size', 300, "hidden size of embedding layer") flags.DEFINE_boolean('use_new_vector', False, 'if use new vector') flags.DEFINE_integer('batch_size', 640, "batch size for train") flags.DEFINE_string('optimizer', 'adam', "the optimizer for train") flags.DEFINE_bool('use_pretrained', True, "if use pretrained vector for embedding layer") flags.DEFINE_bool( 'trainable', True, "if the embedding layer is trainable. this param is used only `use_pretrained` is true" ) # data relation flags.DEFINE_integer('max_len', 150, "regular sentence to a fixed length") flags.DEFINE_boolean('is_kfold', False, "is kfold") flags.DEFINE_integer('kfold', 8, "k when kfold is true") flags.DEFINE_boolean( 'is_retrain', False, 'if retrain, this will done when embedding is no-trainable')
from tensorflow import flags import pdb import tensorflow as tf import copy import io import math import randomized_telescope_runner as runner FLAGS = flags.FLAGS # Almost always leave these fixed flags.DEFINE_boolean('use_cuda', True, 'use Cuda') flags.DEFINE_float('meta_lr', None, 'meta-optimization learning rate') flags.DEFINE_float('exp_decay', 0.9, 'exp decay constant') flags.DEFINE_float('beta1', 0.9, 'adam beta1') flags.DEFINE_float('beta2', 0.999, 'adam beta2') flags.DEFINE_float('adam_eps', 1e-8, 'adam eps') flags.DEFINE_float('mnist_momentum', 0.9, 'momentum of learner on mnist') flags.DEFINE_float('warm_start_lr', 0.1, 'warm start learning rate') flags.DEFINE_integer('warm_start_steps', 50, 'warm start steps') flags.DEFINE_string('optimizer', 'sgd', 'sgd adam or mom')
"save_first_n_videos", 20, "save as .png the individual frames of the first X videos", ) flags.DEFINE_integer("sync_dist", -1, "maximum distance between the syncronous digits") # 20 flags.DEFINE_integer("noise_parts_size", 8, "size of the digits parts used as noise") flags.DEFINE_integer("no_noise_parts", 0, "number of noise parts") flags.DEFINE_integer("video_frames", 10, "number of frames in a video") flags.DEFINE_string("split", "train", "train or test") flags.DEFINE_string("dataset_name", "digits_sync", "name of the dataset") flags.DEFINE_string("dataset_path", "./datasets/", "path to save the dataset") flags.DEFINE_boolean( "predefined", True, "create random paths (moves) or load from predefined ones") flags.DEFINE_string("predefined_path", "./create_datasets/predefined_path_train.pickle", "file for predefined digits paths (moves)") # create the set of labels # a label is defined by a set of two digits # final label is for the case with all digits moving randomply # 10 * 9 / 2 + 1 = 45 + 1 labels def get_labels_dict_sincron(): # create labels label = 0 labels_dict = {}
#! /usr/bin/env python from net.build import TFNet from tensorflow import flags import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' flags.DEFINE_string("test", "./test/", "path to testing directory") flags.DEFINE_boolean( "slice_frame", False, "Test by slicing big frame on smaller, because YOLO can't see small objects" ) flags.DEFINE_boolean( "from_videos", False, "Predict from video (that will be found in test dir) frames with video_step" ) flags.DEFINE_integer("video_step", 120, "Step for next frames in video") flags.DEFINE_float("slice_step", 0.07, "Step of slicing window") flags.DEFINE_float( "slice_max_iou", 0.1, "Max IOU above which rectangles will be considered as conflicting and will be choosed most probable one" ) flags.DEFINE_integer("slice_win_size", 100, "Size of window that will slice frame in pixels") flags.DEFINE_boolean("save_xml", False, "Saves objects in custom XML file") flags.DEFINE_boolean("save_image", False, "Saves image with painted objects") flags.DEFINE_float( "slice_down_rate", 0.8, "Downsample rate for frame on each iteration ([0.0 - 1.0], new size will be win_size * rate)" ) flags.DEFINE_string("binary", "./bin/", "path to .weights directory")
def train(): # # data loading data_path = 'preprocessed_POSCO.csv' # csv 파일로 불러오기 # 포스코 모델 # data_path = 'repro_45.csv' # csv 파일로 불러오기 contents, points = tool.loading_rdata(data_path) # CSV 읽어오기 vocab_list = tool.cut(contents) # contents 에 모든 기사들을 1개의 리스트에 통합 # transform document to vector max_document_length = 1400 x, vocabulary, vocab_size = tool.make_vocab(vocab_list, max_document_length) tool.save_vocab('news_vocab_sk.txt', contents, max_document_length) # tool.save_vocab('news_vocab_posco.txt', vocabulary, max_document_length) # vocab = tool.load_vocab('news_vocab_sk.txt') print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(points, threshold=0) # divide dataset into train/test set x_train, x_test, y_train, y_test = tool.divide(x, y, train_prop=0.9) # Model Hyperparameters flags.DEFINE_integer('embedding_dim', 128, "Dimensionality of embedded vector (default: 128)") flags.DEFINE_string('filter_sizes', '3,4,5', "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer('num_filters', 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float('dropout_keep_prob', 0.5, "Dropout keep probability (default: 0.5)") flags.DEFINE_float('l2_reg_lambda', 0.1, "L2 regularization lambda (default: 0.0)") # Training parameters flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)") flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") flags.DEFINE_integer("num_checkpoints", 10, "Number of checkpoints to store (default: 5)") # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = flags.FLAGS # print('\nParameters : ') # for attr, value in sorted(FLAGS.flag_values_dict()): # print('{}={}'.format(attr.upper(), value)) # print('') with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): cnn = TextCNN(sequence_length=x_train.shape[1], num_classes=y_train.shape[1], vocab_size=vocab_size, embedding_size=FLAGS.embedding_dim, filter_sizes=list( map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # cnn = CharCNN() # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{}".format(v.name), g) sparsity_summary = tf.summary.scalar( "{}".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Initialize all variables sess.run(tf.global_variables_initializer()) # initW = tool.load_embedding_vectors(vocabulary) # sess.run(cnn.W.assign(initW)) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } _, step, summaries, loss, accuracy = sess.run([ train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy ], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) def batch_iter(data, batch_size, num_epochs, shuffle=True): """ Generates a batch iterator for a dataset. """ data = np.array(data) data_size = len(data) num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation( np.arange(data_size)) shuffled_data = data[shuffle_indices] else: shuffled_data = data for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index] # Generate batches batches = batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) testpoint = 0 # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: if testpoint + 100 < len(x_test): testpoint += 100 else: testpoint = 0 print("\nEvaluation:") dev_step(x_test[testpoint:testpoint + 100], y_test[testpoint:testpoint + 100], writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path))
"File globs for original model input.") flags.DEFINE_string("feature_names", "predictions", "Name of the feature " "to use for training.") flags.DEFINE_string("feature_sizes", "4716", "Length of the feature vectors.") # Model flags. flags.DEFINE_string("model", "LinearRegressionModel", "Which architecture to use for the model.") flags.DEFINE_integer("batch_size", 256, "How many examples to process per batch.") flags.DEFINE_string("label_loss", "CrossEntropyLoss", "Loss computed on validation data") # Other flags. flags.DEFINE_boolean("run_once", True, "Whether to run eval only once.") flags.DEFINE_boolean("echo_gap", False, "Whether to echo GAP at the end.") flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.") def find_class_by_name(name, modules): """Searches the provided modules for the named class and returns it.""" modules = [getattr(module, name, None) for module in modules] return next(a for a in modules if a) def get_input_evaluation_tensors(reader, data_pattern, batch_size=256): logging.info("Using batch size of " + str(batch_size) + " for evaluation.") with tf.name_scope("eval_input"): files = gfile.Glob(data_pattern)
'CallVariantsOutput protos.') flags.DEFINE_string( 'checkpoint', None, 'Required. Path to the TensorFlow model checkpoint to use to evaluate ' 'candidate variant calls.') flags.DEFINE_integer( 'batch_size', 512, 'Number of candidate variant tensors to batch together during inference. ' 'Larger batches use more memory but are more computational efficient.') flags.DEFINE_integer('max_batches', None, 'Max. batches to evaluate. Defaults to all.') flags.DEFINE_integer('num_readers', 8, 'Number of parallel readers to create for examples.') flags.DEFINE_string('model_name', 'inception_v3', 'The name of the model architecture of --checkpoint.') flags.DEFINE_boolean('include_debug_info', False, 'If true, include extra debug info in the output.') flags.DEFINE_string( 'execution_hardware', 'auto', 'When in cpu mode, call_variants will not place any ops on the GPU, even ' 'if one is available. In accelerator mode call_variants validates that at ' 'least some hardware accelerator (GPU/TPU) was available for us. This ' 'option is primarily for QA purposes to allow users to validate their ' 'accelerator environment is correctly configured. In auto mode, the ' 'default, op placement is entirely left up to TensorFlow') class ExecutionHardwareError(Exception): pass def prepare_inputs(source_path, model, batch_size, num_readers=None):
#! /usr/bin/env python from darknet import * from tfnet import * from tensorflow import flags flags.DEFINE_string("testset", "test", "path to testing directory") flags.DEFINE_string("dataset", "../pascal/VOCdevkit/IMG/", "path to dataset directory") flags.DEFINE_string("annotation", "../pascal/VOCdevkit/ANN/", "path to annotation directory") flags.DEFINE_float("threshold", 0.1, "detection threshold") flags.DEFINE_string("model", "", "configuration of choice") flags.DEFINE_boolean("train", False, "training mode or not?") flags.DEFINE_integer("load", 0, "load a saved backup/checkpoint, -1 for newest") flags.DEFINE_boolean("savepb", False, "save net and weight to a .pb file") flags.DEFINE_float("gpu", 0.0, "How much gpu (from 0.0 to 1.0)") flags.DEFINE_float("lr", 1e-5, "Learning rate") flags.DEFINE_integer("keep", 20, "Number of most recent training results to save") flags.DEFINE_integer("batch", 12, "Batch size") flags.DEFINE_integer("epoch", 1000, "Number of epoch") flags.DEFINE_integer("save", 2000, "Save checkpoint every ? training examples") FLAGS = flags.FLAGS image = FLAGS.dataset annot = FLAGS.annotation + 'parsed.bin' def get_dir(dirs):
import tensorflow.contrib.slim as slim from tensorflow.python import pywrap_tensorflow FLAGS = flags.FLAGS flags.DEFINE_string("Ensemble_Models", "./", "the directory to store models for ensemble.") flags.DEFINE_string("ensemble_model_path", None, "the files to store models for ensemble.") flags.DEFINE_string("ensemble_output_path", None, "the files to store ensembled models.") flags.DEFINE_string("eval_data_pattern", "", "") flags.DEFINE_integer("num_readers", 8, "") flags.DEFINE_integer("batch_size", 128, "") flags.DEFINE_integer("top_k", 20, "") flags.DEFINE_boolean("run_once", True, "") flags.DEFINE_boolean("restore_once", False, "restore checkpoint once") flags.DEFINE_integer("random_seed", 666, "") flags.DEFINE_integer("tile_num", 10, "the number of sample copies") tf.set_random_seed(FLAGS.random_seed) def find_class_by_name(name, modules): modules = [getattr(module, name, None) for module in modules] return next(a for a in modules if a) def combine_models(models, model_input, num_frames, reader, labels_batch, is_training): model_nums = len(models) prob_ratio = [1.0 for i in range(model_nums)]
flags.DEFINE_string( 'input_videos_csv', None, 'CSV file with lines "<video_file>,<labels>", where ' '<video_file> must be a path of a video and <labels> ' 'must be an integer list joined with semi-colon ";"') # Optional flags. flags.DEFINE_string( 'model_dir', os.path.join(os.getenv('HOME'), 'yt8m'), 'Directory to store model files. It defaults to ~/yt8m') # The following flags are set to match the YouTube-8M dataset format. flags.DEFINE_integer('frames_per_second', 12, 'This many frames per second will be processed') flags.DEFINE_boolean( 'skip_frame_level_features', False, 'If set, frame-level features will not be written: only ' 'video-level features will be written with feature ' 'names mean_*') flags.DEFINE_string( 'labels_feature_key', 'labels', 'Labels will be written to context feature with this ' 'key, as int64 list feature.') flags.DEFINE_string( 'image_feature_key', 'rgb', 'Image features will be written to sequence feature with ' 'this key, as bytes list feature, with only one entry, ' 'containing quantized feature string.') flags.DEFINE_string( 'video_file_feature_key', 'id', 'Input <video_file> will be written to context feature ' 'with this key, as bytes list feature, with only one '
"model", "BasicUNetModel", "Which architecture to use for the model. Models are defined " "in models.py.") # Model flags. flags.DEFINE_integer( "batch_size", 8, "How many examples to process per batch for evaluating.") flags.DEFINE_string("label_loss", "CrossEntropyLoss", "Loss computed on validation data") flags.DEFINE_float( "prediction_threshold", 0.5, "Which value to use as a threshold of true and false values") # Other flags. flags.DEFINE_boolean("run_once", False, "Whether to run eval only once.") flags.DEFINE_boolean("half_memory", False, "Whether to run eval with only 45% GPU memory.") def find_class_by_name(name, modules): """Searches the provided modules for the named class and returns it.""" modules = [getattr(module, name, None) for module in modules] return next(a for a in modules if a) def get_input_evaluation_tensors(reader, data_list, data_pattern, batch_size=32, nfold=5,
FLAGS = flags.FLAGS flags.DEFINE_string('logging_verbosity', 'INFO', 'Level of logging verbosity ' '(e.g. `INFO` `DEBUG`).') flags.DEFINE_string('project_id', None, 'GCP project id.') flags.DEFINE_string('job_name', None, 'Dataflow job name.') flags.DEFINE_integer('num_workers', None, 'Number of dataflow workers.') flags.DEFINE_string('worker_machine_type', None, 'Machine types.') flags.DEFINE_string('region', None, 'GCP region to use.') flags.DEFINE_string('input_dir', None, 'Path of the directory containing input data.') flags.DEFINE_string('output_dir', None, 'Path to write output data to.') flags.DEFINE_float( 'train_size', 0.7, 'Percentage of input data to use for' ' training vs validation.') flags.DEFINE_boolean('gcp', False, 'Runs on GCP or locally.') flags.mark_flag_as_required('input_dir') flags.mark_flag_as_required('output_dir') def _mark_gcp_flags_as_required(inputs): if FLAGS.gcp: return bool(inputs['project_id']) & bool(inputs['job_name']) return True flags.register_multi_flags_validator( ['project_id', 'job_name'], _mark_gcp_flags_as_required, message=('--project_id and --job_name must be specified if --gcp set to ' '`true`.'))
flags.DEFINE_string('dataset_root_dir', '', 'Root directory to put all the training data.') flags.DEFINE_string('csv_path', '', 'CSV file path.') flags.DEFINE_string('checkpoint_dir', './checkpoint', 'Checkpoint directory.') flags.DEFINE_string('debug_image_dir', './debug_output_image', 'Debug output image directory.') flags.DEFINE_string('log_dir', './log', 'Log directory for tensorflow.') flags.DEFINE_integer('batch_size', 4, 'Batch size, default 4.') flags.DEFINE_integer('iterations', 90000000, 'Number of iterations, default 90000000.') flags.DEFINE_integer( 'display_step', 20, 'Number of iterations between optimizer print info and save test image, default 20.' ) flags.DEFINE_float('learning_rate', 0.0005, 'Learning rate, default 0.0005.') flags.DEFINE_boolean('restore_checkpoint', True, 'If true, restore from latest checkpoint, default True.') flags.DEFINE_boolean( 'just_set_batch_size_to_one', False, 'If true, just set batch size to one and exit(in order to call python freeze_model.py), default False.' ) FLAGS = flags.FLAGS if FLAGS.dataset_root_dir == '': print('must set dataset_root_dir') exit() if FLAGS.csv_path == '': print('must set csv_path') exit() if FLAGS.just_set_batch_size_to_one: FLAGS.batch_size = 1
flags.DEFINE_string('feature_names', 'mean_audio', 'Features to be used, separated by ,.') # 1024, 128 flags.DEFINE_string('feature_sizes', '128', 'Dimensions of features to be used, separated by ,.') # Set by the memory limit. Larger values will reduce data passing times. For debug, use a small value, e.g., 1024. flags.DEFINE_integer('batch_size', 2048, 'Size of batch processing.') # For debug, use a single reader. flags.DEFINE_integer('num_readers', 2, 'Number of readers to form a batch.') # To find the best k in validate set, set it as True. # After getting the best k, setting this as False when using train and validate set to re-train the model. flags.DEFINE_boolean( 'is_tuning_hyper_para', False, 'Boolean variable indicating whether to perform hyper-parameter tuning.' ) # Separated by ,. flags.DEFINE_string('ks', '16', 'k nearest neighbors to tune.') flags.DEFINE_integer('pred_k', 16, 'The k nearest neighbor to make predictions.') flags.DEFINE_string( 'model_dir', '/tmp/ml-knn', 'The directory to which prior and posterior probabilities should be written.' ) flags.DEFINE_boolean('is_train', True, 'Boolean variable to indicate training or test.')
def load_flags_config(): pred_flags = flags.FLAGS # Feature Extractor flags # Optional flags. flags.DEFINE_string( 'extractor_model_dir', NLP_PREP_MODEL_PATH, 'Directory to store model files. It defaults to ' 'src/data/video_tasks/preprocess_model') # The following flags are set to match the YouTube-8M dataset format. flags.DEFINE_integer('frames_per_second', 1, 'This many frames per second will be processed') flags.DEFINE_string( 'labels_feature_key', 'labels', 'Labels will be written to context feature with this ' 'key, as int64 list feature.') flags.DEFINE_string( 'image_feature_key', 'rgb', 'Image features will be written to sequence feature with ' 'this key, as bytes list feature, with only one entry, ' 'containing quantized feature string.') flags.DEFINE_string( 'video_file_key_feature_key', 'id', 'Input <video_file> will be written to context feature ' 'with this key, as bytes list feature, with only one ' 'entry, containing the file path of the video. This ' 'can be used for debugging but not for training or eval.') flags.DEFINE_boolean( 'insert_zero_audio_features', True, 'If set, inserts features with name "audio" to be 128-D ' 'zero vectors. This allows you to use YouTube-8M ' 'pre-trained model.') # Predict Input flags.DEFINE_string( "train_dir", NLP_MODEL_PATH, "The directory to load the model files from. We assume " "that you have already run eval.py onto this, such that " "inference_model.* files already exist.") flags.DEFINE_string( "vocabulary_file", os.path.join(os.path.dirname(NLP_MODEL_PATH), "vocabulary.csv"), "idxmap file") flags.DEFINE_string( "input_model_tgz", "", "If given, must be path to a .tgz file that was written " "by this binary using flag --output_model_tgz. In this " "case, the .tgz file will be untarred to " "--untar_model_dir and the model will be used for " "inference.") flags.DEFINE_string( "untar_model_dir", "", "If --input_model_tgz is given, then this directory will " "be created and the contents of the .tgz file will be " "untarred here.") # Predict Output # flags.DEFINE_string("output_file", "", # "The file to save the predictions to.") flags.DEFINE_string( "output_model_tgz", "", "If given, should be a filename with a .tgz extension, " "the model graph and checkpoint will be bundled in this " "gzip tar. This file can be uploaded to Kaggle for the " "top 10 participants.") flags.DEFINE_integer("top_k", 10, "How many predictions to output per video.") # Other flags. flags.DEFINE_integer("batch_size", 1, "How many examples to process per batch.") flags.DEFINE_integer("num_readers", 1, "How many threads to use for reading input files.") flags.DEFINE_boolean("use_gpu", False, "Use device of cpu or gpu. Default False(Use cpu)") return pred_flags
"L2 regularization lambda (default: 0.0)") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_integer("num_epochs", 50, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)") # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") # 3. train the model and test with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): cnn = TextCNN(sequence_length=200,
import tensorflow as tf import utils from tensorflow import flags import tensorflow.contrib.slim as slim FLAGS = flags.FLAGS flags.DEFINE_integer( "moe_num_mixtures", 4, "The number of mixtures (excluding the dummy 'expert') used for MoeModel.") flags.DEFINE_float( "l2_penalty", 1e-8, "the l2 penalty of classifier weights and bias" ) flags.DEFINE_boolean("video_trainable", True, "video level model trainable parameter") class LogisticModel(models.BaseModel): """Logistic model with L2 regularization.""" def create_model(self, model_input, vocab_size, l2_penalty=None, **unused_params): """Creates a logistic model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.""" l2_penalty = l2_penalty or FLAGS.l2_penalty logits = slim.fully_connected(