import readers import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging from tensorflow.python.client import device_lib import utils import model_utils FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string("train_dir", "/tmp/yt8m_model/", "The directory to save the model files in.") # There are three data pattern variables in case data were scattered across # multiple hard-drives. On single machine it helps with IO. flags.DEFINE_string( "train_data_pattern", "", "File glob for the training dataset. If the files refer to Frame Level " "features (i.e. tensorflow.SequenceExample), then set --reader_type " "format. The (Sequence)Examples are expected to have 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") flags.DEFINE_string("train_data_pattern2", "", "additional training dataset.") flags.DEFINE_string("train_data_pattern3", "", "additional training dataset.") flags.DEFINE_string("eval_data_pattern", "", "File glob for the evaluation dataset.") flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature "
from deepvariant.protos import deepvariant_pb2 _ALLOW_EXECUTION_HARDWARE = [ 'auto', # Default, no validation. 'cpu', # Don't use accelerators, even if available. 'accelerator', # Must be hardware acceleration or an error will be raised. ] # The number of digits past the decimal point that genotype likelihoods are # rounded to, for numerical stability. _GL_PRECISION = 10 FLAGS = flags.FLAGS flags.DEFINE_string( 'examples', None, 'Required. tf.Example protos containing DeepVariant candidate variants in ' 'TFRecord format, as emitted by make_examples.') flags.DEFINE_string( 'outfile', None, 'Required. Destination path where we will write output candidate variants ' 'with additional likelihood information in TFRecord format of ' 'CallVariantsOutput protos.') flags.DEFINE_string( 'checkpoint', None, 'Required. Path to the TensorFlow model checkpoint to use to evaluate ' 'candidate variant calls.') flags.DEFINE_integer( 'batch_size', 512, 'Number of candidate variant tensors to batch together during inference. ' 'Larger batches use more memory but are more computational efficient.') flags.DEFINE_integer('max_batches', None,
import readers import frame_level_models import video_level_models import eval_util from tensorflow.python.lib.io import file_io from tensorflow import app from tensorflow import logging from tensorflow import flags from tensorflow import gfile from datetime import datetime import tensorflow.contrib.slim as slim from tensorflow.python import pywrap_tensorflow FLAGS = flags.FLAGS flags.DEFINE_string("Ensemble_Models", "./", "the directory to store models for ensemble.") flags.DEFINE_string("ensemble_model_path", None, "the files to store models for ensemble.") flags.DEFINE_string("ensemble_output_path", None, "the files to store ensembled models.") flags.DEFINE_string("eval_data_pattern", "", "") flags.DEFINE_integer("num_readers", 8, "") flags.DEFINE_integer("batch_size", 128, "") flags.DEFINE_integer("top_k", 20, "") flags.DEFINE_boolean("run_once", True, "") flags.DEFINE_boolean("restore_once", False, "restore checkpoint once") flags.DEFINE_integer("random_seed", 666, "") flags.DEFINE_integer("tile_num", 10, "the number of sample copies") tf.set_random_seed(FLAGS.random_seed)
contents, points = tool.loading_rdata(data_path) contents = tool.cut(contents, cut=2) # tranform document to vector max_document_length = 200 x, vocabulary, vocab_size = tool.make_input(contents, max_document_length) print('사전단어수 : %s' % (vocab_size)) y = tool.make_output(points, threshold=2.5) # divide dataset into train/test set x_train, x_test, y_train, y_test = tool.divide(x, y, train_prop=0.8) # Model Hyperparameters flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of embedded vector (default: 128)") flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.1, "L2 regularization lambda (default: 0.0)") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_integer("num_epochs", 10, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 100,
import readers import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.lib.io import file_io from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging from tensorflow.python.client import device_lib import utils FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string("train_dir", "/tmp/yt8m_model/", "The directory to save the model files in.") flags.DEFINE_string( "train_data_pattern", "", "File glob for the training dataset. If the files refer to Frame Level " "features (i.e. tensorflow.SequenceExample), then set --reader_type " "format. The (Sequence)Examples are expected to have 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature " "to use for training.") flags.DEFINE_string("feature_sizes", "1024", "Length of the feature vectors.") # Model flags. flags.DEFINE_bool( "frame_features", False, "If set, then --train_data_pattern must be frame-level features. "
import time from tensorflow import app from tensorflow import flags from urllib.parse import quote FLAGS = flags.FLAGS # In OpenCV3.X, this is available as cv2.CAP_PROP_POS_MSEC # In OpenCV2.X, this is available as cv2.cv.CV_CAP_PROP_POS_MSEC CAP_PROP_POS_MSEC = 0 IMG_FORMATS = ['.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG'] if __name__ == '__main__': # Required flags for input and output. flags.DEFINE_string( 'output_tfrecords_file', None, 'File containing tfrecords will be written at this path.') flags.DEFINE_string( 'input_videos_csv', None, 'CSV file with lines "<video_file>,<labels>", where ' '<video_file> must be a path of a video and <labels> ' 'must be an integer list joined with semi-colon ";"') # Optional flags. flags.DEFINE_string( 'model_dir', os.path.join(format(os.getenv('HOME')), 'yt8m'), 'Directory to store model files. It defaults to ~/yt8m') # The following flags are set to match the YouTube-8M dataset format. flags.DEFINE_integer('frames_per_second', 1, 'This many frames per second will be processed') flags.DEFINE_string(
import os os.environ['CUDA_VISIBLE_DEVICES'] = '' import numpy as np import random import tensorflow as tf from tensorflow import flags from evaluation.evaluator import Evaluator from learning_baseline.feature_based.build_prediction import BuildPrediction, BuildPredictions from learning_baseline.feature_based.input import Dictionary, ReadExamples, GetInputPlaceholders, GetFeedDict, ReadQuestionAnnotations from learning_baseline.feature_based.graph import GetLogits, GetVariables from utils.squad_utils import ReconstructStrFromSpan FLAGS = flags.FLAGS flags.DEFINE_string('input-articles', 'dataset/dev-annotatedpartial.proto', '') flags.DEFINE_string('input-features', 'dataset/dev-featuresbucketized.proto', '') flags.DEFINE_string('input-featuredict', 'dataset/featuredictbucketized-25000.proto', '') flags.DEFINE_integer('min-articles', None, '') if __name__ == '__main__': dictionary = Dictionary(FLAGS.input_featuredict) feature_index = dictionary.GetIndex('Dep Path NN - conj -> NN') examples = ReadExamples(FLAGS.input_features, dictionary, FLAGS.min_articles) question_annotations = ReadQuestionAnnotations(FLAGS.input_articles) for example in examples:
from tensorflow import flags import utils.yaml_config as yaml_config import yaml FLAGS_0 = flags.FLAGS # read additional params from console flags.DEFINE_string( "model_dir", "/models/graph_models/models_something_something_new/tmp_model", "") flags.DEFINE_string("config_file", "./configs/smt_config.yaml", "") flags.DEFINE_integer("rand_no", 1241322, "") # read params from config file def read_params(save=True): FLAGS = yaml_config.read_config(FLAGS_0.config_file) # add console params to config params FLAGS.model_dir = FLAGS_0.model_dir FLAGS.rand_no = FLAGS_0.rand_no # save git info FLAGS.git_info = yaml_config.get_git_info() FLAGS.num_eval_clips = FLAGS.num_eval_spatial_clips * FLAGS.num_eval_temporal_clips name_yaml = FLAGS.model_dir + f'/config_{FLAGS.rand_no}.yaml' print(name_yaml) if save: # save current config file with open(name_yaml, 'w') as outfile: yaml.dump(yaml_config.namespace_to_dict(FLAGS), outfile, default_flow_style=False)
from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging import eval_util import losses import readers import utils import numpy as np import labels_autoencoder FLAGS = flags.FLAGS if __name__ == '__main__': flags.DEFINE_string("train_dir", "/tmp/yt8m_model/", "The directory to load the model files from.") flags.DEFINE_string("model_checkpoint_path", "", "The file path to load the model from.") flags.DEFINE_string("output_file", "", "The file to save the predictions to.") flags.DEFINE_string( "input_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") # Model flags. flags.DEFINE_bool( "frame_features", False, "If set, then --eval_data_pattern must be frame-level features. " "Otherwise, --eval_data_pattern must be aggregated video-level "
import models import tensorflow as tf import utils from tensorflow import flags import tensorflow.contrib.slim as slim FLAGS = flags.FLAGS flags.DEFINE_integer( "moe_num_mixtures", 2, "The number of mixtures (excluding the dummy 'expert') used for MoeModel.") flags.DEFINE_float("moe_l2", 1e-8, "L2 penalty for MoeModel.") flags.DEFINE_integer("moe_low_rank_gating", -1, "Low rank gating for MoeModel.") flags.DEFINE_bool("moe_prob_gating", False, "Prob gating for MoeModel.") flags.DEFINE_string("moe_prob_gating_input", "prob", "input Prob gating for MoeModel.") flags.DEFINE_integer("num_supports", 8, "num_supports for chain.") #-------------- flags.DEFINE_integer("deep_chain_layers", 3, "The number of layers used for DeepChainModel") flags.DEFINE_integer("deep_chain_relu_cells", 128, "The number of relu cells used for DeepChainModel") flags.DEFINE_string( "deep_chain_relu_type", "relu", "The type of relu cells used for DeepChainModel (options are elu and relu)" ) flags.DEFINE_bool("deep_chain_use_length", False,
import tensorflow as tf from GAN_cond_G_D_vae_gen import networks from gan_tf_examples.mnist import util from tensorflow import flags import tensorflow.contrib.gan as tfgan from gan_tf_examples.mnist.data_provider import provide_data from VAE.variational_autoencoder import VAE flags.DEFINE_integer('batch_size', 64, 'The number of images in each batch.') flags.DEFINE_string('train_log_dir', 'lul', 'Directory where to write event logs.') flags.DEFINE_string('dataset_dir', "../data/mnist", 'Location of data.') flags.DEFINE_string('vae_checkpoint_folder', None, 'Location of the saved VAE model') flags.DEFINE_integer('max_number_of_steps', 20000, 'The maximum number of gradient steps.') flags.DEFINE_string( 'gan_type', 'unconditional', 'Either `unconditional`, `conditional`, or `infogan`.') flags.DEFINE_integer( 'grid_size', 8, 'Grid size for image visualization.') flags.DEFINE_integer(
import video_level_models import readers import tensorflow as tf from tensorflow.python.lib.io import file_io from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging import utils FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string("train_dir", "/tmp/yt8m_model/", "The directory to load the model files from. " "The tensorboard metrics files are also saved to this " "directory.") flags.DEFINE_string( "eval_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") # Other flags. flags.DEFINE_integer("batch_size", 1024, "How many examples to process per batch.") flags.DEFINE_integer("num_readers", 8, "How many threads to use for reading input files.") flags.DEFINE_boolean("run_once", False, "Whether to run eval only once.") flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.")
Specifically, this checks whether the provided record sizes are consistent and that the file does not end in the middle of a record. It does not verify the CRCs. """ import struct import tensorflow as tf from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string("input_data_pattern", "", "File glob defining for the TFRecords files.") def main(unused_argv): logging.set_verbosity(tf.logging.INFO) logging.info(FLAGS.input_data_pattern) paths = gfile.Glob(FLAGS.input_data_pattern) logging.info("Found %s files.", len(paths)) for path in paths: with gfile.Open(path, "r") as f: first_read = True while True: length_raw = f.read(8) if not length_raw and first_read: logging.fatal("File %s has no data.", path) break
flags.DEFINE_boolean('use_cuda', True, 'use Cuda') flags.DEFINE_float('meta_lr', None, 'meta-optimization learning rate') flags.DEFINE_float('exp_decay', 0.9, 'exp decay constant') flags.DEFINE_float('beta1', 0.9, 'adam beta1') flags.DEFINE_float('beta2', 0.999, 'adam beta2') flags.DEFINE_float('adam_eps', 1e-8, 'adam eps') flags.DEFINE_float('mnist_momentum', 0.9, 'momentum of learner on mnist') flags.DEFINE_float('warm_start_lr', 0.1, 'warm start learning rate') flags.DEFINE_integer('warm_start_steps', 50, 'warm start steps') flags.DEFINE_string('optimizer', 'sgd', 'sgd adam or mom') flags.DEFINE_float('momentum', 0.9, 'momentum for SGD') flags.DEFINE_integer('batch_size', 100, 'batch size') flags.DEFINE_float('init_lr', 0.01, 'init lr') flags.DEFINE_float('init_decay', 0.1, 'init decay') flags.DEFINE_float('norm_clip', -1.0, 'clip grads to this norm before doing RT') flags.DEFINE_float('post_clip', 1.0, 'clip before applying grads') flags.DEFINE_integer('train_horizon', 10, 'truncated horizon of problem') flags.DEFINE_integer('test_horizon', 10, 'full horizon of problem') flags.DEFINE_integer('test_frequency', 5, 'test freq') flags.DEFINE_integer('calibrate_frequency', 5, 'calibrate freq') flags.DEFINE_boolean('compute_penalty', False, 'penalize RT due to multiple '
import tensorflow as tf import numpy as np import models from tensorflow.examples.tutorials.mnist import input_data from IPython import embed from tensorflow import flags FLAGS = flags.FLAGS flags.DEFINE_string("log_dir", "./logs/default", "default summary/checkpoint directory") flags.DEFINE_float("learning_rate", 0.01, "base learning rate") flags.DEFINE_string("model", "DNN", "model name") flags.DEFINE_string("optimizer", "GradientDescentOptimizer", "kind of optimizer to use.") flags.DEFINE_integer("batch_size", 1024, "default batch size.") flags.DEFINE_integer("max_steps", 10000, "number of max iteration to train.") def main(_): mnist = input_data.read_data_sets("./data", one_hot=True) # defien model input: image and ground-truth label model_inputs = tf.placeholder(dtype=tf.float32, shape=[None, 784]) labels = tf.placeholder(dtype=tf.float32, shape=[None, 10]) model = getattr(models, FLAGS.model, None)() predictions = model.create_model(model_inputs) # define cross entropy loss term loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=predictions)
from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging import readers import utils #%% FLAGS = flags.FLAGS if __name__ == '__main__': flags.DEFINE_string( "input_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") flags.DEFINE_string("input_data_pattern2", "", "Additional data files.") flags.DEFINE_string("input_data_pattern3", "", "More data files.") flags.DEFINE_string("output_file", "", "The file to save the l2 params to.") # Model flags. flags.DEFINE_bool( "frame_features", False, "If set, then --eval_data_pattern must be frame-level features. " "Otherwise, --eval_data_pattern must be aggregated video-level " "features. The model must also be set appropriately (i.e. to read 3D " "batches VS 4D batches.")
import eval_util import losses import ensemble_level_models import readers import tensorflow as tf from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging import utils FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string("model_checkpoint_path", "", "The file to load the model files from. ") flags.DEFINE_string("train_dir", "/tmp/yt8m/", "The directory to write the result in. ") flags.DEFINE_string( "eval_data_patterns", "", "File globs defining the evaluation dataset in tensorflow.SequenceExample format." ) flags.DEFINE_string("input_data_pattern", None, "File globs for original model input.") flags.DEFINE_string("feature_names", "predictions", "Name of the feature " "to use for training.") flags.DEFINE_string("feature_sizes", "3862", "Length of the feature vectors.") # Model flags. flags.DEFINE_string("model", "LinearRegressionModel",
import sys sys.path.append("..") import config.Config import models import tensorflow as tf import numpy as np import os import codecs from tensorflow import app from tensorflow import flags FLAGS = flags.FLAGS flags.DEFINE_string('gpu', '7', 'gpu will be used') flags.DEFINE_string('data_path', '../benchmarks/kg_100k/', 'path of data') flags.DEFINE_string('save_path', '../res/kg_100k/transe', 'path of save model and data') # hyperparameter flags.DEFINE_integer('threads', 8, 'work threads') flags.DEFINE_integer('epochs', 1000, 'train epochs') flags.DEFINE_integer('batch_size', 128, 'batch size') flags.DEFINE_integer('embed_dim', 300, 'embedding dimension') flags.DEFINE_string('opt', 'SGD', 'optimition method') def main(_): cuda_list = FLAGS.gpu data_path = FLAGS.data_path save_path = FLAGS.save_path if not os.path.exists(save_path): os.makedirs(save_path)
import MDLSTM.datareader as readers import MDLSTM.export_model as export_model import MDLSTM.eval_util as eval_util import MDLSTM.model as models import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow import app, flags, gfile, logging import MDLSTM.utils from MDLSTM.utils import task_as_string FLAGS = flags.FLAGS if __name__ == "__main__": # Define dataset flags flags.DEFINE_string("train_dir", "./mdlstm_train/", "Directory to save models in") flags.DEFINE_string("train_data_pattern", "", "File glob for the training dataset") flags.DEFINE_string("test_data_pattern", "", "File Glob for the test set.") flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature to use for training") flags.DEFINE_string("feature_sizes", "1024", "Length of feature vectors") # Model Flags flags.DEFINE_bool("slice_features", True, "If set, the input should have 4 dimensions.") flags.DEFINE_string("vocab_path", "vocabulary.txt", "Which vocab to use in order to help prediction.") flags.DEFINE_bool("start_new_model", False, "If set, this will not resume from a checkpoint and will instead create a new model")
import traceback import time import random as rd import glob import tensorflow.contrib.slim as slim from tensorflow import flags from tensorflow import app from tensorflow import logging import math os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' FLAGS = flags.FLAGS if __name__ == '__main__': flags.DEFINE_string( 'data_dir', '/data1/sina_recmd/simba/trunk/src/content_analysis/douyin/code/data/douyin_tfrecord', '') flags.DEFINE_string( 'train_dir', '/data1/sina_recmd/simba/trunk/src/content_analysis/douyin/code/data/cdssm_output', '') flags.DEFINE_float('dropout_keep_prob', 0.9, 'dropout keep prob') flags.DEFINE_integer('batch_size', 50, 'batch size') flags.DEFINE_integer('NEG', 9, 'NEG size') flags.DEFINE_float('initial_lr', 0.001, '') flags.DEFINE_float('lr_decay_factor', 0.7, '') flags.DEFINE_integer('num_epochs_before_decay', 5, '') flags.DEFINE_float('l2_reg_lambda', 0.05, '') flags.DEFINE_integer('num_epochs', 30000, 'num_epochs')
from tensorflow import flags from tensorflow import gfile from tensorflow import logging import eval_util import losses import readers import utils FLAGS = flags.FLAGS if __name__ == '__main__': # Input flags.DEFINE_string( "train_dir", "", "The directory to load the model files from. We assume " "that you have already run eval.py onto this, such that " "inference_model.* files already exist.") flags.DEFINE_string( "input_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") flags.DEFINE_string( "input_model_tgz", "", "If given, must be path to a .tgz file that was written " "by this binary using flag --output_model_tgz. In this " "case, the .tgz file will be untarred to " "--untar_model_dir and the model will be used for " "inference.") flags.DEFINE_string(
import sys from tensorflow import flags FLAGS = flags.FLAGS if __name__ == "__main__": flags.DEFINE_string("train_path", "", "The directory where training files locates.") flags.DEFINE_string("candidates", "", "The candidate methods.") if __name__ == "__main__": candidate_methods = map(lambda x: x.strip(), FLAGS.candidates.strip().split(",")) train_path = FLAGS.train_path output_path = ",".join( map(lambda x: "%s/%s/*.tfrecord" % (train_path, x), candidate_methods)) sys.stdout.write(output_path) sys.stdout.flush()
import test_util import utils import image_models import readers import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string("train_dir", "model", "The directory to load the model files from.") flags.DEFINE_string("model_checkpoint_path", "", "The file to load the model files from. ") flags.DEFINE_string("output_file", "test.out", "File that contains the csv predictions") flags.DEFINE_string("test_data_list", None, "List that contains testing data path") flags.DEFINE_string("test_data_pattern", "test-data/*.tfrecord", "Pattern for testing data path") flags.DEFINE_integer("image_width", 1918, "Width of the image.") flags.DEFINE_integer("image_height", 1280, "Height of the image.") flags.DEFINE_integer("image_channels", 3, "Channels of the image.") flags.DEFINE_string( "model", "BasicUNetModel", "Which architecture to use for the model. Models are defined "
import six from pydub import AudioSegment import vggish_input import vggish_params import vggish_postprocess import vggish_slim from subprocess import call FLAGS = flags.FLAGS if __name__ == '__main__': flags.DEFINE_string( 'input_youtube_id_tsv', '/Users/julia/PSVA/data/output/balanced/youtube_balanced_train.txt', 'TSV file with lines "<id>\t<start_time>\t<end_time>\t<label>" where ' ' and <labels> ' 'must be an integer list joined with semi-colon ";"') flags.DEFINE_string('output_dir', '/Users/julia/PSVA/data/output/balanced', 'where to save the wav file') def main(unused_argv): print(FLAGS.input_youtube_id_tsv) f = open(FLAGS.output_dir + "/video_path_label.txt", "w+") i = 0 for youtube_id, st_time, end_time, label in csv.reader(open( FLAGS.input_youtube_id_tsv),
import models import tensorflow as tf import utils from tensorflow import flags import tensorflow.contrib.slim as slim FLAGS = flags.FLAGS # flags.DEFINE_integer( # "moe_num_mixtures", 2, # "The number of mixtures (excluding the dummy 'expert') used for MoeModel.") flags.DEFINE_float("moe_l2", 1e-8, "L2 penalty for MoeModel.") flags.DEFINE_integer("moe_low_rank_gating", -1, "Low rank gating for MoeModel.") flags.DEFINE_bool("moe_prob_gating", True, "Prob gating for MoeModel.") flags.DEFINE_string("moe_prob_gating_input", "prob", "input Prob gating for MoeModel.") class LogisticModel(models.BaseModel): """Logistic model with L2 regularization.""" def create_model(self, model_input, vocab_size, l2_penalty=1e-8, **unused_params): """Creates a logistic model. Args: model_input: 'batch' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset.
from tensorflow import flags # Model Hyperparameters flags.DEFINE_integer("embedding_dim", 50, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "45", "Comma-separated filter sizes (default: '3,4,5')") #flags.DEFINE_string("filter_sizes", "5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 65, "Number of filters per filter size (default: 128)") flags.DEFINE_integer("hidden_num", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.0006, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.0001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss", "point_wise", "loss function (default:point_wise)") flags.DEFINE_integer('extend_feature_dim', 10, 'overlap_feature_dim') # Training parameters flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epochs", 30, "Number of training epochs (default: 200)") flags.DEFINE_integer( "evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)")
from tensorflow import flags FLAGS = flags.FLAGS flags.DEFINE_integer("iterations", 30, "Number of frames per batch for DBoF.") flags.DEFINE_bool("dbof_add_batch_norm", True, "Adds batch normalization to the DBoF model.") flags.DEFINE_bool( "sample_random_frames", True, "If true samples random frames (for frame level models). If false, a random" "sequence of frames is sampled instead.") flags.DEFINE_integer("dbof_cluster_size", 8192, "Number of units in the DBoF cluster layer.") flags.DEFINE_integer("dbof_hidden_size", 1024, "Number of units in the DBoF hidden layer.") flags.DEFINE_string( "dbof_pooling_method", "max", "The pooling method used in the DBoF cluster layer. " "Choices are 'average' and 'max'.") flags.DEFINE_string( "video_level_classifier_model", "MoeModel", "Some Frame-Level models can be decomposed into a " "generalized pooling operation followed by a " "classifier layer") flags.DEFINE_integer("lstm_cells", 1024, "Number of LSTM cells.") flags.DEFINE_integer("lstm_layers", 2, "Number of LSTM layers.") class FrameLevelLogisticModel(models.BaseModel): def create_model(self, model_input, vocab_size, num_frames, **unused_params): """Creates a model which uses a logistic classifier over the average of the frame-level features.
import video_level_models import readers import tensorflow as tf from tensorflow import app from tensorflow import flags from tensorflow import gfile from tensorflow import logging import utils FLAGS = flags.FLAGS if __name__ == "__main__": # Dataset flags. flags.DEFINE_string( "train_dir", "/tmp/yt8m_model/", "The directory to load the model files from. " "The tensorboard metrics files are also saved to this " "directory.") flags.DEFINE_string( "eval_data_pattern", "", "File glob defining the evaluation dataset in tensorflow.SequenceExample " "format. The SequenceExamples are expected to have an 'rgb' byte array " "sequence feature as well as a 'labels' int64 context feature.") flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature " "to use for training.") flags.DEFINE_string("feature_sizes", "1024", "Length of the feature vectors.") # Model flags. flags.DEFINE_bool( "frame_features", False,
'W': 186.07931, 'V': 99.06841, 'Y': 163.06333, 'M(ox)': 147.035405, 'groupCH3': 14.01565, 'groupOH': 17.00274, 'groupH': 1.007825, 'groupH2O': 18.01057, 'groupCH3CO': 42.01057, 'groupO': 15.994915, 'groupNH3': 17.02655} FLAGS = flags.FLAGS flags.DEFINE_string( 'input_data', '', 'Input data filepath.') flags.DEFINE_string( 'output_data_dir', '', 'Input data filepath.') flags.DEFINE_bool( 'clean_peptides', True, 'True if peptide modifications are in [x] format.') flags.DEFINE_string( 'sequence_col', _MOD_SEQUENCE, 'Modified sequence column name in the input file.') flags.DEFINE_string( 'charge_col',
flags.DEFINE_integer('aln_match', 4, 'Match score (expected to be a non-negative score).') flags.DEFINE_integer('aln_mismatch', 6, 'Mismatch score (expected to be a non-negative score).') flags.DEFINE_integer( 'aln_gap_open', 8, 'Gap open score (expected to be a non-negative score). ' 'Score for a gap of length g is -(gap_open + (g - 1) * gap_extend).') flags.DEFINE_integer( 'aln_gap_extend', 1, 'Gap extend score (expected to be a non-negative score). ' 'Score for a gap of length g is -(gap_open + (g - 1) * gap_extend).') flags.DEFINE_integer('aln_k', 23, 'k-mer size used to index target sequence.') flags.DEFINE_float('aln_error_rate', .01, 'Estimated sequencing error rate.') flags.DEFINE_string( 'realigner_diagnostics', '', 'Root directory where the realigner should place diagnostic output (such as' ' a dump of the DeBruijn graph, and a log of metrics reflecting the graph ' 'and realignment to the haplotypes). If empty, no diagnostics are output.' ) flags.DEFINE_bool( 'emit_realigned_reads', False, 'If True, we will emit realigned reads if our realigner_diagnostics are ' 'also enabled.') # Margin added to the reference sequence for the aligner module. _REF_ALIGN_MARGIN = 20 # --------------------------------------------------------------------------- # Set configuration settings. # ---------------------------------------------------------------------------