コード例 #1
0
def collect_models():
    models = dict()
    models["MobileNetV2"] = tfapp.MobileNetV2(input_shape=IMG_SHAPE,
                                              include_top=False,
                                              weights='imagenet')
    models["NASNetMobile"] = tfapp.NASNetMobile(input_shape=(130, 386, 3),
                                                include_top=False,
                                                weights='imagenet')
    models["DenseNet121"] = tfapp.DenseNet121(input_shape=IMG_SHAPE,
                                              include_top=False,
                                              weights='imagenet')
    models["VGG16"] = tfapp.VGG16(input_shape=IMG_SHAPE,
                                  include_top=False,
                                  weights='imagenet')
    models["Xception"] = tfapp.Xception(input_shape=(134, 390, 3),
                                        include_top=False,
                                        weights='imagenet')
    models["ResNet50V2"] = tfapp.ResNet50V2(input_shape=IMG_SHAPE,
                                            include_top=False,
                                            weights='imagenet')
    models["NASNetLarge"] = tfapp.NASNetLarge(input_shape=(130, 386, 3),
                                              include_top=False,
                                              weights='imagenet')

    # omit non 2^n shape
    # models["InceptionV3"] = tfapp.InceptionV3(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')
    # models["InceptionResNetV2"] = \
    #     tfapp.InceptionResNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')
    return models
コード例 #2
0
def make_new_model():
    resnet50 = tfapp.ResNet50V2(input_shape=IMG_SHAPE,
                                include_top=False,
                                weights='imagenet')
    midout = resnet50.get_layer('conv3_block4_out').output
    output = convolution(midout, 128, 3, 1, 'custom_output')
    model = tf.keras.Model(resnet50.input, outputs=output)
    model.summary()
コード例 #3
0
    def build(self):
        """
        Build the model
        input shape: [batch_size, w, h, channels]
        """
        inputs = layers.Input(self.config.model.input_shape)
        x = inputs
        batch_norm = self.config.model.batch_norm

        base_model = applications.ResNet50V2(
            input_shape=self.config.model.input_shape, include_top=False)

        # Use the activations of these layers
        layer_names = [
            'conv1_conv',
            'conv2_block2_out',  # 48 x 48 x 256
            'conv3_block3_out',  # 24 x 24 x 512
            'conv4_block5_out',  # 12 x 12 x 1024
            'conv5_block3_out',  # 6 x 6 x 2048
        ]
        outputs = [base_model.get_layer(name).output for name in layer_names]
        output_channels = [
            base_model.get_layer(name).output_shape[-1] for name in layer_names
        ]

        # Create the feature extraction model
        down_stack = models.Model(inputs=base_model.input,
                                  outputs=outputs,
                                  name="ResNet50V2")
        down_stack.trainable = False
        skips = down_stack(x)
        x = skips[-1]

        for i, (skip, k) in enumerate(
                zip(reversed(skips[:-1]), reversed(output_channels[:-1]))):
            upsample = _upconvolution(k,
                                      batch_norm=batch_norm,
                                      name=f"up_conv2d_{i}")
            x = upsample(x)
            concat = layers.Concatenate(axis=3)
            x = concat([skip, x])
            block = _upsample_block(k,
                                    batch_norm=batch_norm,
                                    name=f"upsampler_block_{i}",
                                    padding="same")
            x = block(x)

        output_upsample = _upconvolution(output_channels[0],
                                         batch_norm=batch_norm,
                                         name=f"up_conv2d_out")
        x = output_upsample(x)
        output_conv = layers.Conv2D(self.config.model.num_classes, 1)
        x = output_conv(x)

        flatten = layers.Reshape((-1, self.config.model.num_classes))
        outputs = flatten(x)
        self.model = models.Model(inputs=inputs, outputs=outputs)
コード例 #4
0
def rn50(img_size=(224,224), num_class=2, weights="imagenet", dtype=tf.float32):
    input_layer = layers.Input(shape=(img_size[0],img_size[1],3), dtype=dtype)
    base = models.ResNet50V2(input_tensor=input_layer, include_top=False, weights=weights)
    base.trainable = True
    x = base.output
    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Dense(num_class)(x)
    preds = layers.Activation("softmax", dtype=tf.float32)(x)
    model = tf.keras.models.Model(inputs=input_layer, outputs=preds)
    return model
コード例 #5
0
def ResNet50V2(num_classes: int, image_size=(256, 256)):

    base_model = applications.ResNet50V2(
        weights=None, include_top=False, input_shape=(*image_size, 3))
    x = base_model.output
    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Dense(512, activation='relu')(x)
    x = layers.Dropout(0.5)(x)
    predictions = layers.Dense(num_classes, activation='softmax')(x)

    model = Model(inputs=base_model.input, outputs=predictions)

    return model
コード例 #6
0
    return op.get(type)


all_combinations = [(bs, it, op, lr) for bs in BATCH_SIZE
                    for it in INTERPOLATION for op in OPTIMIZER_TYPE
                    for lr in LEARNING_RATE]

for bs, it, op, lr in all_combinations:
    train_data, valid_data = load_preprocess(DIRECTORY, bs, IMAGE_SIZE, it)

    print(
        "Parameter Tuning: Batch_size = {}, Interpolation = {}, Optimizer = {}, Learning_rate = {}"
        .format(bs, it, op, lr))

    base_model = applications.ResNet50V2(include_top=False,
                                         weights="imagenet",
                                         input_shape=(224, 224, 3))

    base_model.summary()
    train_feat, train_labels = extract_features(base_model, train_data, 1442,
                                                bs, 2048)
    valid_feat, valid_labels = extract_features(base_model, valid_data, 618,
                                                bs, 2048)

    inputs = keras.Input(shape=(7, 7, 2048))
    x = layers.Flatten()(inputs)
    x = layers.Dense(2048, activation='relu')(x)
    #x = layers.Dropout(0.3)(x)
    x = layers.Dense(512, activation='relu')(x)
    #x = layers.Dropout(0.3)(x)
    x = layers.Dense(128, activation='relu')(x)
コード例 #7
0
ファイル: __init__.py プロジェクト: aigagror/hiercon
def make_model(args, nclass, input_shape):
    # Weight decay
    if args.weight_decay is not None and args.weight_decay > 0:
        regularizer = keras.regularizers.L2(args.weight_decay / 2)
    else:
        regularizer = None
    if args.optimizer == 'lamb':
        regularizer = None
        logging.info(
            'adding weight decay via the LAMB optimizer instead of Keras regularization'
        )

    # Inputs
    input = keras.Input(input_shape, name='image')
    input2 = keras.Input(input_shape, name='image2')

    if args.backbone == 'resnet50v2':
        backbone = applications.ResNet50V2(weights=None,
                                           include_top=False,
                                           input_shape=input_shape,
                                           pooling='avg')
        if (input_shape[0] or 224) < 224:
            logging.warning('using standard resnet on small dataset')
    elif args.backbone == 'small-resnet50v2':
        backbone = small_resnet_v2.SmallResNet50V2(include_top=False,
                                                   input_shape=input_shape,
                                                   pooling='avg')
        if (input_shape[0] or 224) >= 224:
            logging.warning('using small resnet on large dataset')
    elif args.backbone == 'resnet50':
        backbone = applications.ResNet50(weights=None,
                                         include_top=False,
                                         input_shape=input_shape,
                                         pooling='avg')
    elif args.backbone == 'affine':
        backbone = keras.Sequential(
            [layers.GlobalAveragePooling2D(),
             layers.Dense(1)])
    else:
        raise Exception(f'unknown model {args.backbone}')

    # Add weight decay to backbone
    backbone = add_regularization_with_reset(backbone, regularizer)

    # Standardize input
    stand_img = custom_layers.StandardizeImage()

    # Features
    raw_feats, raw_feats2 = backbone(stand_img(input)), backbone(
        stand_img(input2))

    # Normalize features?
    feats, feats2 = optional_normalize(args.feat_norm, raw_feats, raw_feats2)

    # Name the features
    feats = custom_layers.Identity(name='feats')(feats)
    feats2 = custom_layers.Identity(name='feats2')(feats2)

    # Measure the norms of the features
    if args.feat_norm is not None:
        feats = custom_layers.MeasureNorm(name='feat_norm')(feats)

    # Projection
    if args.proj_dim is None or args.proj_dim <= 0:
        projection = custom_layers.Identity(name='projection')
    else:
        projection = tf.keras.Sequential([
            layers.Dense(2048,
                         kernel_regularizer=regularizer,
                         bias_regularizer=regularizer),
            layers.BatchNormalization(),
            layers.ReLU(),
            layers.Dense(2048,
                         kernel_regularizer=regularizer,
                         bias_regularizer=regularizer),
            layers.BatchNormalization(),
            layers.ReLU(),
            layers.Dense(
                args.proj_dim, kernel_regularizer=regularizer, use_bias=False)
        ],
                                         name='projection')
    if args.proj_norm == 'sn':
        projection = custom_layers.SpectralNormalization(projection,
                                                         name='sn_projection')

    # Projected features
    proj_feats, proj_feats2 = projection(feats), projection(feats2)

    # Normalize projected features?
    proj_feats, proj_feats2 = optional_normalize(args.proj_norm, proj_feats,
                                                 proj_feats2)

    # Name the projected features
    proj_feats = custom_layers.Identity(name='proj_feats')(proj_feats)
    proj_feats2 = custom_layers.Identity(name='proj_feats2')(proj_feats2)

    # Measure the norms of the projected features
    if args.proj_dim is not None and args.proj_dim > 0:
        proj_feats = custom_layers.MeasureNorm(name='proj_norm')(proj_feats)

    # Feature views
    proj_views = custom_layers.FeatViews(name='contrast', dtype=tf.float32)(
        (proj_feats, proj_feats2))

    # Label logits
    if args.stop_gradient:
        feats = tf.stop_gradient(feats)
    prediction = layers.Dense(
        nclass,
        name='label',
        kernel_regularizer=regularizer if args.optimizer != 'lamb' else None,
        bias_regularizer=regularizer if args.optimizer != 'lamb' else None,
        dtype=tf.float32)(feats)

    # Model
    inputs = [input, input2]
    outputs = [prediction, proj_views]

    model = keras.Model(inputs, outputs)

    return model
コード例 #8
0
    def encode(self, input_image):
        """
        :param input_image: (batch, height, width, channel)
        """
        input_shape = input_image.get_shape()
        height = input_shape[1]
        net_name = self.net_name
        weights = "imagenet" if self.pretrained_weight else None

        jsonfile = op.join(opts.PROJECT_ROOT, "model", "build_model",
                           "scaled_layers.json")
        output_layers = self.read_output_layers(jsonfile)
        out_layer_names = output_layers[net_name]

        if net_name == "MobileNetV2":
            from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
            pproc_img = layers.Lambda(lambda x: preprocess_input(x),
                                      name="preprocess_mobilenet")(input_image)
            ptmodel = tfapp.MobileNetV2(input_shape=input_shape,
                                        include_top=False,
                                        weights=weights)

        elif net_name == "NASNetMobile":
            from tensorflow.keras.applications.nasnet import preprocess_input
            assert height == 128

            def preprocess_layer(x):
                x = preprocess_input(x)
                x = tf.image.resize(x,
                                    size=NASNET_SHAPE[:2],
                                    method="bilinear")
                return x

            pproc_img = layers.Lambda(lambda x: preprocess_layer(x),
                                      name="preprocess_nasnet")(input_image)
            ptmodel = tfapp.NASNetMobile(input_shape=NASNET_SHAPE,
                                         include_top=False,
                                         weights=weights)

        elif net_name == "DenseNet121":
            from tensorflow.keras.applications.densenet import preprocess_input
            pproc_img = layers.Lambda(lambda x: preprocess_input(x),
                                      name="preprocess_densenet")(input_image)
            ptmodel = tfapp.DenseNet121(input_shape=input_shape,
                                        include_top=False,
                                        weights=weights)

        elif net_name == "VGG16":
            from tensorflow.keras.applications.vgg16 import preprocess_input
            pproc_img = layers.Lambda(lambda x: preprocess_input(x),
                                      name="preprocess_vgg16")(input_image)
            ptmodel = tfapp.VGG16(input_shape=input_shape,
                                  include_top=False,
                                  weights=weights)

        elif net_name == "Xception":
            from tensorflow.keras.applications.xception import preprocess_input
            assert height == 128

            def preprocess_layer(x):
                x = preprocess_input(x)
                x = tf.image.resize(x,
                                    size=XCEPTION_SHAPE[:2],
                                    method="bilinear")
                return x

            pproc_img = layers.Lambda(lambda x: preprocess_layer(x),
                                      name="preprocess_xception")(input_image)
            ptmodel = tfapp.Xception(input_shape=XCEPTION_SHAPE,
                                     include_top=False,
                                     weights=weights)

        elif net_name == "ResNet50V2":
            from tensorflow.keras.applications.resnet import preprocess_input
            pproc_img = layers.Lambda(lambda x: preprocess_input(x),
                                      name="preprocess_resnet")(input_image)
            ptmodel = tfapp.ResNet50V2(input_shape=input_shape,
                                       include_top=False,
                                       weights=weights)

        elif net_name == "NASNetLarge":
            from tensorflow.keras.applications.nasnet import preprocess_input
            assert height == 128

            def preprocess_layer(x):
                x = preprocess_input(x)
                x = tf.image.resize(x,
                                    size=NASNET_SHAPE[:2],
                                    method="bilinear")
                return x

            pproc_img = layers.Lambda(lambda x: preprocess_layer(x),
                                      name="preprocess_nasnet")(input_image)
            ptmodel = tfapp.NASNetLarge(input_shape=NASNET_SHAPE,
                                        include_top=False,
                                        weights=weights)
        else:
            raise WrongInputException("Wrong pretrained model name: " +
                                      net_name)

        # collect multi scale convolutional features
        layer_outs = []
        for layer_name in out_layer_names:
            layer = ptmodel.get_layer(name=layer_name[1], index=layer_name[0])
            # print("extract feature layers:", layer.name, layer.get_input_shape_at(0), layer.get_output_shape_at(0))
            layer_outs.append(layer.output)

        # create model with multi scale features
        multi_scale_model = tf.keras.Model(ptmodel.input,
                                           layer_outs,
                                           name=net_name + "_base")
        features_ms = multi_scale_model(pproc_img)
        return features_ms