コード例 #1
0
def make_discriminator():
    """Creates a discriminator model that takes an image as input and outputs a single
    value, representing whether the input is real or generated. Unlike normal GANs, the
    output is not sigmoid and does not represent a probability! Instead, the output
    should be as large and negative as possible for generated inputs and as large and
    positive as possible for real inputs.

    Note that the improved WGAN paper suggests that BatchNormalization should not be
    used in the discriminator."""
    model = Sequential()
    if K.image_data_format() == 'channels_first':
        model.add(
            Convolution2D(64, (5, 5), padding='same', input_shape=(1, 28, 28)))
    else:
        model.add(
            Convolution2D(64, (5, 5), padding='same', input_shape=(28, 28, 1)))
    model.add(LeakyReLU())
    model.add(
        Convolution2D(128, (5, 5),
                      kernel_initializer='he_normal',
                      strides=[2, 2]))
    model.add(LeakyReLU())
    model.add(
        Convolution2D(128, (5, 5),
                      kernel_initializer='he_normal',
                      padding='same',
                      strides=[2, 2]))
    model.add(LeakyReLU())
    model.add(Flatten())
    model.add(Dense(1024, kernel_initializer='he_normal'))
    model.add(LeakyReLU())
    model.add(Dense(1, kernel_initializer='he_normal'))
    return model
コード例 #2
0
    def build_discriminator(self):

        model = Sequential()

        model.add(
            Conv2D(32,
                   kernel_size=3,
                   strides=2,
                   input_shape=self.img_shape,
                   padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))

        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity)
コード例 #3
0
def make_generator():
    """Creates a generator model that takes a 100-dimensional noise vector as a "seed",
    and outputs images of size 28x28x1."""
    model = Sequential()
    model.add(Dense(1024, input_dim=100))
    model.add(LeakyReLU())
    model.add(Dense(128 * 7 * 7))
    model.add(BatchNormalization())
    model.add(LeakyReLU())
    if K.image_data_format() == 'channels_first':
        model.add(Reshape((128, 7, 7), input_shape=(128 * 7 * 7, )))
        bn_axis = 1
    else:
        model.add(Reshape((7, 7, 128), input_shape=(128 * 7 * 7, )))
        bn_axis = -1
    model.add(Conv2DTranspose(128, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Convolution2D(64, (5, 5), padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Conv2DTranspose(64, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    # Because we normalized training inputs to lie in the range [-1, 1],
    # the tanh function should be used for the output of the generator to ensure
    # its output also lies in this range.
    model.add(Convolution2D(1, (5, 5), padding='same', activation='tanh'))
    return model
コード例 #4
0
ファイル: GanModel.py プロジェクト: chnzhangrui/NNLO
def discriminator(fixed_bn=False, discr_drop_out=0.2):

    image = Input(shape=(25, 25, 25, 1), name='image')

    bnm = 2 if fixed_bn else 0
    f = (5, 5, 5)
    x = _Conv3D(32, 5, 5, 5, border_mode='same', name='disc_c1')(image)
    x = LeakyReLU()(x)
    x = Dropout(discr_drop_out)(x)

    x = ZeroPadding3D((2, 2, 2))(x)
    x = _Conv3D(8, 5, 5, 5, border_mode='valid', name='disc_c2')(x)
    x = LeakyReLU()(x)
    x = _BatchNormalization(
        name='disc_bn1',
        mode=bnm,
    )(x)
    x = Dropout(discr_drop_out)(x)

    x = ZeroPadding3D((2, 2, 2))(x)
    x = _Conv3D(8, 5, 5, 5, border_mode='valid', name='disc_c3')(x)
    x = LeakyReLU()(x)
    x = _BatchNormalization(
        name='disc_bn2',
        #momentum = 0.00001
        mode=bnm,
    )(x)
    x = Dropout(discr_drop_out)(x)

    x = ZeroPadding3D((1, 1, 1))(x)
    x = _Conv3D(8, 5, 5, 5, border_mode='valid', name='disc_c4')(x)
    x = LeakyReLU()(x)
    x = _BatchNormalization(
        name='disc_bn3',
        mode=bnm,
    )(x)
    x = Dropout(discr_drop_out)(x)

    x = AveragePooling3D((2, 2, 2))(x)
    h = Flatten()(x)

    dnn = _Model(input=image, output=h, name='dnn')

    dnn_out = dnn(image)

    fake = _Dense(1, activation='sigmoid', name='classification')(dnn_out)
    aux = _Dense(1, activation='linear', name='energy')(dnn_out)
    ecal = Lambda(lambda x: K.sum(x, axis=(1, 2, 3)), name='sum_cell')(image)

    return _Model(output=[fake, aux, ecal],
                  input=image,
                  name='discriminator_model')
コード例 #5
0
    def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity)
コード例 #6
0
def conv2d_unit(x, filters, kernels, strides=1):
    """Convolution Unit
    This function defines a 2D convolution operation with BN and LeakyReLU.

    # Arguments
        x: Tensor, input tensor of conv layer.
        filters: Integer, the dimensionality of the output space.
        kernels: An integer or tuple/list of 2 integers, specifying the
            width and height of the 2D convolution window.
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution along the width and
            height. Can be a single integer to specify the same value for
            all spatial dimensions.

    # Returns
            Output tensor.
    """
    x = Conv2D(filters,
               kernels,
               padding='same',
               strides=strides,
               activation='linear',
               kernel_regularizer=l2(5e-4))(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(alpha=0.1)(x)

    return x
コード例 #7
0
ファイル: model.py プロジェクト: luisvivasg/TrainYourOwnYOLO
def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    no_bias_kwargs = {"use_bias": False}
    no_bias_kwargs.update(kwargs)
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1),
    )
コード例 #8
0
def discriminator_model(shape=None):
    discriminator = Sequential()
    #     discriminator.add(Conv(64, kernel_size=(5, 5), strides=(2, 2), padding='same', input_shape=(28,28, 1), kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    discriminator.add(
        Conv(64,
             kernel_size=5,
             strides=2,
             padding='same',
             input_shape=shape,
             kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    discriminator.add(Conv(128, kernel_size=5, strides=2, padding='same'))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    discriminator.add(Flatten())
    discriminator.add(Dense(1, activation='sigmoid'))
    discriminator.compile(loss='binary_crossentropy', optimizer='adam')
    return discriminator
コード例 #9
0
def generator_model(shape=None):
    generator = Sequential()
    #     generator.add(Dense(128*7*7, input_dim=100, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    #     generator.add(LeakyReLU(0.2))
    #     generator.add(Reshape((7, 7, 128)))
    generator.add(
        Dense(128 * shape[0] // 2 // 2 * shape[0] // 2 // 2,
              input_dim=100,
              kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    generator.add(LeakyReLU(0.2))
    generator.add(Reshape((*shape[0] // 2 // 2, 128)))

    generator.add(UpSampling(size=2))
    generator.add(Conv(64, kernel_size=5, padding='same'))
    generator.add(LeakyReLU(0.2))
    generator.add(UpSampling(size=2))
    generator.add(Conv(1, kernel_size=5, padding='same', activation='tanh'))
    generator.compile(loss='binary_crossentropy', optimizer='adam')
    return generator
コード例 #10
0
    def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim, ))
        img = model(noise)

        return Model(noise, img)
コード例 #11
0
ファイル: GanModel.py プロジェクト: chnzhangrui/NNLO
def generator(latent_size=200, return_intermediate=False, with_bn=True):

    latent = Input(shape=(latent_size, ))

    bnm = 0
    x = _Dense(64 * 7 * 7, init='glorot_normal', name='gen_dense1')(latent)
    x = Reshape((7, 7, 8, 8))(x)
    x = _Conv3D(64,
                6,
                6,
                8,
                border_mode='same',
                init='he_uniform',
                name='gen_c1')(x)
    x = LeakyReLU()(x)
    if with_bn:
        x = _BatchNormalization(name='gen_bn1', mode=bnm)(x)
    x = UpSampling3D(size=(2, 2, 2))(x)

    x = ZeroPadding3D((2, 2, 0))(x)
    x = _Conv3D(6, 6, 5, 8, init='he_uniform', name='gen_c2')(x)
    x = LeakyReLU()(x)
    if with_bn:
        x = _BatchNormalization(name='gen_bn2', mode=bnm)(x)
    x = UpSampling3D(size=(2, 2, 3))(x)

    x = ZeroPadding3D((1, 0, 3))(x)
    x = _Conv3D(6, 3, 3, 8, init='he_uniform', name='gen_c3')(x)
    x = LeakyReLU()(x)

    x = _Conv3D(1, 2, 2, 2, bias=False, init='glorot_normal', name='gen_c4')(x)
    x = Activation('relu')(x)

    loc = _Model(input=latent, output=x)
    fake_image = loc(latent)
    _Model(input=[latent], output=fake_image)
    return _Model(input=[latent], output=fake_image, name='generator_model')
コード例 #12
0
ファイル: convert.py プロジェクト: tmobile/keras-yolo3
def _main(args):
    config_path = os.path.expanduser(args.config_path)
    weights_path = os.path.expanduser(args.weights_path)
    assert config_path.endswith(".cfg"), "{} is not a .cfg file".format(
        config_path)
    assert weights_path.endswith(
        ".weights"), "{} is not a .weights file".format(weights_path)

    output_path = os.path.expanduser(args.output_path)
    assert output_path.endswith(
        ".h5"), "output path {} is not a .h5 file".format(output_path)
    output_root = os.path.splitext(output_path)[0]

    # Load weights and config.
    print("Loading weights.")
    weights_file = open(weights_path, "rb")
    major, minor, revision = np.ndarray(shape=(3, ),
                                        dtype="int32",
                                        buffer=weights_file.read(12))
    if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:
        seen = np.ndarray(shape=(1, ),
                          dtype="int64",
                          buffer=weights_file.read(8))
    else:
        seen = np.ndarray(shape=(1, ),
                          dtype="int32",
                          buffer=weights_file.read(4))
    print("Weights Header: ", major, minor, revision, seen)

    print("Parsing Darknet config.")
    unique_config_file = unique_config_sections(config_path)
    cfg_parser = configparser.ConfigParser()
    cfg_parser.read_file(unique_config_file)

    print("Creating Keras model.")
    input_layer = Input(shape=(None, None, 3))
    prev_layer = input_layer
    all_layers = []

    weight_decay = (float(cfg_parser["net_0"]["decay"])
                    if "net_0" in cfg_parser.sections() else 5e-4)
    count = 0
    out_index = []
    for section in cfg_parser.sections():
        print("Parsing section {}".format(section))
        if section.startswith("convolutional"):
            filters = int(cfg_parser[section]["filters"])
            size = int(cfg_parser[section]["size"])
            stride = int(cfg_parser[section]["stride"])
            pad = int(cfg_parser[section]["pad"])
            activation = cfg_parser[section]["activation"]
            batch_normalize = "batch_normalize" in cfg_parser[section]

            padding = "same" if pad == 1 and stride == 1 else "valid"

            # Setting weights.
            # Darknet serializes convolutional weights as:
            # [bias/beta, [gamma, mean, variance], conv_weights]
            prev_layer_shape = K.int_shape(prev_layer)

            weights_shape = (size, size, prev_layer_shape[-1], filters)
            darknet_w_shape = (filters, weights_shape[2], size, size)
            weights_size = np.product(weights_shape)

            print("conv2d", "bn" if batch_normalize else "  ", activation,
                  weights_shape)

            conv_bias = np.ndarray(shape=(filters, ),
                                   dtype="float32",
                                   buffer=weights_file.read(filters * 4))
            count += filters

            if batch_normalize:
                bn_weights = np.ndarray(
                    shape=(3, filters),
                    dtype="float32",
                    buffer=weights_file.read(filters * 12),
                )
                count += 3 * filters

                bn_weight_list = [
                    bn_weights[0],  # scale gamma
                    conv_bias,  # shift beta
                    bn_weights[1],  # running mean
                    bn_weights[2],  # running var
                ]

            conv_weights = np.ndarray(
                shape=darknet_w_shape,
                dtype="float32",
                buffer=weights_file.read(weights_size * 4),
            )
            count += weights_size

            # DarkNet conv_weights are serialized Caffe-style:
            # (out_dim, in_dim, height, width)
            # We would like to set these to Tensorflow order:
            # (height, width, in_dim, out_dim)
            conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
            conv_weights = ([conv_weights]
                            if batch_normalize else [conv_weights, conv_bias])

            # Handle activation.
            act_fn = None
            if activation == "leaky":
                pass  # Add advanced activation later.
            elif activation != "linear":
                raise ValueError(
                    "Unknown activation function `{}` in section {}".format(
                        activation, section))

            # Create Conv2D layer
            if stride > 1:
                # Darknet uses left and top padding instead of 'same' mode
                prev_layer = ZeroPadding2D(((1, 0), (1, 0)))(prev_layer)
            conv_layer = (Conv2D(
                filters,
                (size, size),
                strides=(stride, stride),
                kernel_regularizer=l2(weight_decay),
                use_bias=not batch_normalize,
                weights=conv_weights,
                activation=act_fn,
                padding=padding,
            ))(prev_layer)

            if batch_normalize:
                conv_layer = (BatchNormalization(
                    weights=bn_weight_list))(conv_layer)
            prev_layer = conv_layer

            if activation == "linear":
                all_layers.append(prev_layer)
            elif activation == "leaky":
                act_layer = LeakyReLU(alpha=0.1)(prev_layer)
                prev_layer = act_layer
                all_layers.append(act_layer)

        elif section.startswith("route"):
            ids = [int(i) for i in cfg_parser[section]["layers"].split(",")]
            layers = [all_layers[i] for i in ids]
            if len(layers) > 1:
                print("Concatenating route layers:", layers)
                concatenate_layer = Concatenate()(layers)
                all_layers.append(concatenate_layer)
                prev_layer = concatenate_layer
            else:
                skip_layer = layers[0]  # only one layer to route
                all_layers.append(skip_layer)
                prev_layer = skip_layer

        elif section.startswith("maxpool"):
            size = int(cfg_parser[section]["size"])
            stride = int(cfg_parser[section]["stride"])
            all_layers.append(
                MaxPooling2D(pool_size=(size, size),
                             strides=(stride, stride),
                             padding="same")(prev_layer))
            prev_layer = all_layers[-1]

        elif section.startswith("shortcut"):
            index = int(cfg_parser[section]["from"])
            activation = cfg_parser[section]["activation"]
            assert activation == "linear", "Only linear activation supported."
            all_layers.append(Add()([all_layers[index], prev_layer]))
            prev_layer = all_layers[-1]

        elif section.startswith("upsample"):
            stride = int(cfg_parser[section]["stride"])
            assert stride == 2, "Only stride=2 supported."
            all_layers.append(UpSampling2D(stride)(prev_layer))
            prev_layer = all_layers[-1]

        elif section.startswith("yolo"):
            out_index.append(len(all_layers) - 1)
            all_layers.append(None)
            prev_layer = all_layers[-1]

        elif section.startswith("net"):
            pass

        else:
            raise ValueError(
                "Unsupported section header type: {}".format(section))

    # Create and save model.
    if len(out_index) == 0:
        out_index.append(len(all_layers) - 1)
    model = Model(inputs=input_layer,
                  outputs=[all_layers[i] for i in out_index])
    print(model.summary())
    if args.weights_only:
        model.save_weights("{}".format(output_path))
        print("Saved Keras weights to {}".format(output_path))
    else:
        model.save("{}".format(output_path))
        print("Saved Keras model to {}".format(output_path))

    # Check to see if all weights have been read.
    remaining_weights = len(weights_file.read()) / 4
    weights_file.close()
    print("Read {} of {} from Darknet weights.".format(
        count, count + remaining_weights))
    if remaining_weights > 0:
        print("Warning: {} unused weights".format(remaining_weights))

    if args.plot_model:
        plot(model, to_file="{}.png".format(output_root), show_shapes=True)
        print("Saved model plot to {}.png".format(output_root))
コード例 #13
0
def _main_(args):

    config_path = args.conf

    with open(config_path) as config_buffer:
        config = json.loads(config_buffer.read())

    if config['backup']['create_backup']:
        config = create_backup(config)

    keras.backend.tensorflow_backend.set_session(get_session())

    #path for the training and validation dataset
    datasetTrainPath = os.path.join(args.folder, "train")
    datasetValPath = os.path.join(args.folder, "val")

    for folder in [datasetTrainPath, datasetValPath]:
        if not os.path.isdir(folder):
            raise Exception("{} doesn't exist!".format(folder))

    classesTrain = next(os.walk(datasetTrainPath))[1]
    classesVal = next(os.walk(datasetValPath))[1]

    if not classesVal == classesTrain:
        raise Exception(
            "The training and validation classes must be the same!")
    else:
        folders = classesTrain

    #training configuration
    epochs = config['train']['nb_epochs']
    batchSize = config['train']['batch_size']
    width = config['model']['input_size_w']
    height = config['model']['input_size_h']
    depth = 3 if config['model']['gray_mode'] == False else 1

    #config keras generators
    if len(
            folders
    ) == 2:  #if just have 2 classes, the model will have a binary output
        classes = 1
    else:
        classes = len(folders)

    #count all samples
    imagesTrainPaths = []
    imagesValPaths = []
    for folder in folders:
        imagesTrainPaths += list(
            list_images(os.path.join(datasetTrainPath, folder)))
        imagesValPaths += list(
            list_images(os.path.join(datasetValPath, folder)))

    generator_config = {
        'IMAGE_H': height,
        'IMAGE_W': width,
        'IMAGE_C': depth,
        'BATCH_SIZE': batchSize
    }

    #callbacks
    model_name = config['train']['saved_weights_name']
    checkPointSaverBest = ModelCheckpoint(model_name,
                                          monitor='val_acc',
                                          verbose=1,
                                          save_best_only=True,
                                          save_weights_only=False,
                                          mode='auto',
                                          period=1)
    ckp_model_name = os.path.splitext(model_name)[1] + "_ckp.h5"
    checkPointSaver = ModelCheckpoint(ckp_model_name,
                                      verbose=1,
                                      save_best_only=False,
                                      save_weights_only=False,
                                      period=10)

    tb = TensorBoard(log_dir=config['train']['tensorboard_log_dir'],
                     histogram_freq=0,
                     batch_size=batchSize,
                     write_graph=True,
                     write_grads=False,
                     write_images=False,
                     embeddings_freq=0,
                     embeddings_layer_names=None,
                     embeddings_metadata=None)

    #create the classification model
    # make the feature extractor layers
    if depth == 1:
        input_size = (height, width, 1)
        input_image = Input(shape=input_size)
    else:
        input_size = (height, width, 3)
        input_image = Input(shape=input_size)

    feature_extractor = import_feature_extractor(config['model']['backend'],
                                                 input_size)

    train_generator = BatchGenerator(imagesTrainPaths,
                                     generator_config,
                                     norm=feature_extractor.normalize,
                                     jitter=True)
    val_generator = BatchGenerator(imagesValPaths,
                                   generator_config,
                                   norm=feature_extractor.normalize,
                                   jitter=False)

    features = feature_extractor.extract(input_image)

    # make the model head
    output = Conv2D(classes, (1, 1), padding="same")(features)
    output = BatchNormalization()(output)
    output = LeakyReLU(alpha=0.1)(output)
    output = GlobalAveragePooling2D()(output)
    output = Activation("sigmoid")(output) if classes == 1 else Activation(
        "softmax")(output)

    if config['train']['pretrained_weights'] != "":
        model = load_model(config['model']['pretrained_weights'])
    else:
        model = Model(input_image, output)
        opt = Adam()
        model.compile(loss="binary_crossentropy"
                      if classes == 1 else "categorical_crossentropy",
                      optimizer=opt,
                      metrics=["accuracy"])
    model.summary()

    model.fit_generator(train_generator,
                        steps_per_epoch=len(imagesTrainPaths) // batchSize,
                        epochs=epochs,
                        validation_data=val_generator,
                        validation_steps=len(imagesValPaths) // batchSize,
                        callbacks=[checkPointSaverBest, checkPointSaver, tb],
                        workers=12,
                        max_queue_size=40)
コード例 #14
0
ファイル: GanModel.py プロジェクト: chnzhangrui/NNLO
    def big_assemble_models(self):

        image = Input(shape=(25, 25, 25, 1), name='image')

        x = _Conv3D(32, 5, 5, 5, border_mode='same')(image)
        x = LeakyReLU()(x)
        x = Dropout(discr_drop_out)(x)

        x = ZeroPadding3D((2, 2, 2))(x)
        x = _Conv3D(8, 5, 5, 5, border_mode='valid')(x)
        x = LeakyReLU()(x)
        x = BatchNormalization()(x)
        x = Dropout(discr_drop_out)(x)

        x = ZeroPadding3D((2, 2, 2))(x)
        x = Conv3D(8, 5, 5, 5, border_mode='valid')(x)
        x = LeakyReLU()(x)
        x = BatchNormalization()(x)
        x = Dropout(discr_drop_out)(x)

        x = ZeroPadding3D((1, 1, 1))(x)
        x = Conv3D(8, 5, 5, 5, border_mode='valid')(x)
        x = LeakyReLU()(x)
        x = BatchNormalization()(x)
        x = Dropout(discr_drop_out)(x)

        x = AveragePooling3D((2, 2, 2))(x)
        h = Flatten()(x)

        fake = Dense(1, activation='sigmoid', name='generation')(h)
        aux = Dense(1, activation='linear', name='auxiliary')(h)
        ecal = Lambda(lambda x: K.sum(x, axis=(1, 2, 3)),
                      name='sum_cell')(image)

        self.discriminator = Model(output=[fake, aux, ecal],
                                   input=image,
                                   name='discriminator_model')

        latent = Input(shape=(self.latent_size, ))

        x = Dense(64 * 7 * 7, init='he_uniform')(latent)
        x = Reshape((7, 7, 8, 8))(x)
        x = Conv3D(64, 6, 6, 8, border_mode='same', init='he_uniform')(x)
        x = LeakyReLU()(x)
        x = BatchNormalization()(x)
        x = UpSampling3D(size=(2, 2, 2))(x)

        x = ZeroPadding3D((2, 2, 0))(x)
        x = Conv3D(6, 6, 5, 8, init='he_uniform')(x)
        x = LeakyReLU()(x)
        x = BatchNormalization()(x)
        x = UpSampling3D(size=(2, 2, 3))(x)

        x = ZeroPadding3D((1, 0, 3))(x)
        x = Conv3D(6, 3, 3, 8, init='he_uniform')(x)
        x = LeakyReLU()(x)

        x = Conv3D(1, 2, 2, 2, bias=False, init='glorot_normal')(x)
        x = Activation('relu')(x)

        loc = Model(latent, x)
        #fake_image = loc(latent)
        self.generator = Model(input=latent, output=x, name='generator_model')

        c_fake, c_aux, c_ecal = self.discriminator(x)
        self.combined = Model(input=latent,
                              output=[c_fake, c_aux, c_ecal],
                              name='combined_model')
コード例 #15
0
ファイル: main.py プロジェクト: tirashi645/kenkyu
def DCGAN_discriminator(img_shape,
                        disc_img_shape,
                        patch_num,
                        model_name='DCGAN_discriminator'):
    disc_raw_img_shape = (disc_img_shape[0], disc_img_shape[1], img_shape[-1])
    list_input = [
        Input(shape=disc_img_shape, name='disc_input_' + str(i))
        for i in range(patch_num)
    ]
    list_raw_input = [
        Input(shape=disc_raw_img_shape, name='disc_raw_input_' + str(i))
        for i in range(patch_num)
    ]

    axis_num = -1
    filters_num = 64
    conv_num = int(np.floor(np.log(disc_img_shape[1]) / np.log(2)))
    list_filters = [filters_num * min(8, (2**i)) for i in range(conv_num)]

    # First Conv
    generated_patch_input = Input(shape=disc_img_shape,
                                  name='discriminator_input')
    xg = Conv2D(list_filters[0], (3, 3),
                strides=(2, 2),
                name='disc_conv2d_1',
                padding='same')(generated_patch_input)
    xg = BatchNormalization(axis=axis_num)(xg)
    xg = LeakyReLU(0.2)(xg)

    # First Raw Conv
    raw_patch_input = Input(shape=disc_raw_img_shape,
                            name='discriminator_raw_input')
    xr = Conv2D(list_filters[0], (3, 3),
                strides=(2, 2),
                name='raw_disc_conv2d_1',
                padding='same')(raw_patch_input)
    xr = BatchNormalization(axis=axis_num)(xr)
    xr = LeakyReLU(0.2)(xr)

    # Next Conv
    for i, f in enumerate(list_filters[1:]):
        name = 'disc_conv2d_' + str(i + 2)
        x = Concatenate(axis=axis_num)([xg, xr])
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding='same')(x)
        x = BatchNormalization(axis=axis_num)(x)
        x = LeakyReLU(0.2)(x)

    x_flat = Flatten()(x)
    x = Dense(2, activation='softmax', name='disc_dense')(x_flat)

    PatchGAN = Model(inputs=[generated_patch_input, raw_patch_input],
                     outputs=[x],
                     name='PatchGAN')

    x = [
        PatchGAN([list_input[i], list_raw_input[i]]) for i in range(patch_num)
    ]

    if len(x) > 1:
        x = Concatenate(axis=axis_num)(x)
    else:
        x = x[0]

    x_out = Dense(2, activation='softmax', name='disc_output')(x)

    discriminator_model = Model(inputs=(list_input + list_raw_input),
                                outputs=[x_out],
                                name=model_name)

    return discriminator_model
コード例 #16
0
ファイル: main.py プロジェクト: tirashi645/kenkyu
def conv_block_unet(x, f, name, bn_axis, bn=True, strides=(2, 2)):
    x = LeakyReLU(0.2)(x)
    x = Conv2D(f, (3, 3), strides=strides, name=name, padding='same')(x)
    if bn: x = BatchNormalization(axis=bn_axis)(x)
    return x
コード例 #17
0
    def set(inputs, include_input=False):
        """
		input should be HxWx3 input
		Default shape 416x416x3
		"""
        if include_input:
            input_image = Input(shape=(IMAGE_H, IMAGE_W, 3), name='input')
            #true_boxes  = Input(shape=(1, 1, 1, TRUE_BOX_BUFFER , 4))
        idx = 0
        conv_n = 'conv_%d'
        norm_n = 'norm_%d'

        idx += 1
        # Layer 1 (Dim:416x416x3, /1)
        x = Conv2D(32, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(input_image)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)

        idx += 1
        # Layer 2 (Dim:208x208x32, /2)
        x = Conv2D(64, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)

        idx += 1
        # Layer 3 (Dim:104x104x64, /4)
        x = Conv2D(128, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 4 (Dim:104x104x128, /4)
        x = Conv2D(64, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 5 (Dim:104x104x64, /4)
        x = Conv2D(128, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)

        idx += 1
        # Layer 6 (Dim:52x52x128, /8)
        x = Conv2D(256, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 7 (Dim:52x52x256, /8)
        x = Conv2D(128, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 8 (Dim:52x52x128, /8)
        x = Conv2D(256, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False,
                   input_shape=(416, 416, 3))(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)

        idx += 1
        # Layer 9 (Dim:26x26x256, /16)
        x = Conv2D(512, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 10 (Dim:26x26x512, /16)
        x = Conv2D(256, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 11 (Dim:26x26x128, /16)
        x = Conv2D(512, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 12 (Dim:26x26x512, /16)
        x = Conv2D(256, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 13 (Dim:26x26x256, /16)
        x = Conv2D(512, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        skip_connection = x

        x = MaxPooling2D(pool_size=(2, 2))(x)

        idx += 1
        # Layer 14 (Dim:13x13x512, /32)
        x = Conv2D(1024, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 15 (Dim:13x13x1024, /32)
        x = Conv2D(512, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 16 (Dim:13x13x512, /32)
        x = Conv2D(1024, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 17 (Dim:13x13x1024, /32)
        x = Conv2D(512, (1, 1),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        idx += 1
        # Layer 18 (Dim:13x13x512, /32)
        x = Conv2D(1024, (3, 3),
                   strides=(1, 1),
                   padding='same',
                   name=conv_n % idx,
                   use_bias=False)(x)
        x = BatchNormalization(name=norm_n % idx)(x)
        x = LeakyReLU(alpha=0.1)(x)

        return x, skip_connection, idx