コード例 #1
0
    def build_model(self,
                    input_size=(256, 256, 1),
                    n_layers=4,
                    n_filters=64,
                    use_batch_norm=False):
        inputs = Input(input_size)
        net = inputs
        down_layers = []
        for _ in range(n_layers):
            net = self.conv_block(net, n_filters, use_batch_norm)
            print(net.get_shape())
            down_layers.append(net)
            net = MaxPooling2D((2, 2), strides=2)(net)
            n_filters *= 2

        net = Dropout(0.5)(net)
        net = self.conv_block(net, n_filters, use_batch_norm)
        print(net.get_shape())

        for conv in reversed(down_layers):
            n_filters //= 2
            net = self.upsample_block(net, n_filters, (2, 2), use_batch_norm)
            print(net.get_shape())
            net = concatenate([conv, net], axis=3)
            net = self.conv_block(net, n_filters, use_batch_norm)

        net = Conv2D(2,
                     3,
                     activation='relu',
                     padding='same',
                     kernel_initializer='he_normal')(net)
        net = Conv2D(1, 1, activation='sigmoid')(net)
        self.model = Model(inputs=inputs, outputs=net)
        self.model.summary()
コード例 #2
0
    def _build(self):
        inputs = Input(self.input_shape)
        x = self.input_block()(inputs)
        x = self.basic_block(x.get_shape().as_list()[3], 256)(x)
        x = self.convolution_block(x.get_shape().as_list()[3], 256, 2)(x)

        x = Dropout(self.dropout)(x)
        x = conv2D_batchnorm(256, [4, 1])(x)
        x = Dropout(self.dropout)(x)

        classes = conv2D_batchnorm(self.num_classes, [1, 13], padding="same")(x)
        pattern = Flatten()(classes)
        pattern = Dense(self.pattern_size)(pattern)
        width = int(x.get_shape()[2])
        pattern = tf.reshape(pattern, (-1, 1, 1, self.pattern_size))
        pattern = tf.tile(pattern, [1, 1, width, 1])

        x = Concatenate()([classes, pattern])
        x = conv2D_batchnorm(self.num_classes, [1, 1], padding="same")(x)
        x = tf.squeeze(x, [1])
        outs = Softmax()(x)
        return Model(inputs=inputs, outputs=outs)
コード例 #3
0
    def make_network(self, amino_acid_encoding, peptide_max_length,
                     n_flank_length, c_flank_length, flanking_averages,
                     convolutional_filters, convolutional_kernel_size,
                     convolutional_activation, convolutional_kernel_l1_l2,
                     dropout_rate, post_convolutional_dense_layer_sizes):
        """
        Helper function to make a keras network given hyperparameters.
        """

        # We import keras here to avoid tensorflow debug output, etc. unless we
        # are actually about to use Keras.
        configure_tensorflow()
        from tensorflow.keras.layers import (Input, Dense, Dropout,
                                             Concatenate, Conv1D, Lambda)
        from tensorflow.keras.models import Model
        from tensorflow.keras import regularizers, initializers

        model_inputs = {}

        empty_x_dict = self.network_input(FlankingEncoding([], [], []))
        sequence_dims = empty_x_dict['sequence'].shape[1:]

        numpy.testing.assert_equal(
            sequence_dims[0],
            peptide_max_length + n_flank_length + c_flank_length)

        model_inputs['sequence'] = Input(shape=sequence_dims,
                                         dtype='float32',
                                         name='sequence')
        model_inputs['peptide_length'] = Input(shape=(1, ),
                                               dtype='int32',
                                               name='peptide_length')

        current_layer = model_inputs['sequence']
        current_layer = Conv1D(
            filters=convolutional_filters,
            kernel_size=convolutional_kernel_size,
            kernel_regularizer=regularizers.l1_l2(*convolutional_kernel_l1_l2),
            padding="same",
            activation=convolutional_activation,
            name="conv1")(current_layer)
        if dropout_rate > 0:
            current_layer = Dropout(
                name="conv1_dropout",
                rate=dropout_rate,
                noise_shape=(None, 1, int(
                    current_layer.get_shape()[-1])))(current_layer)

        convolutional_result = current_layer

        outputs_for_final_dense = []

        for flank in ["n_flank", "c_flank"]:
            current_layer = convolutional_result
            for (i, size) in enumerate(
                    list(post_convolutional_dense_layer_sizes) + [1]):
                current_layer = Conv1D(
                    name="%s_post_%d" % (flank, i),
                    filters=size,
                    kernel_size=1,
                    kernel_regularizer=regularizers.l1_l2(
                        *convolutional_kernel_l1_l2),
                    activation=("tanh" if size == 1 else
                                convolutional_activation))(current_layer)
            single_output_result = current_layer

            dense_flank = None
            if flank == "n_flank":

                def cleavage_extractor(x):
                    return x[:, n_flank_length]

                single_output_at_cleavage_position = Lambda(
                    cleavage_extractor,
                    name="%s_cleaved" % flank)(single_output_result)

                def max_pool_over_peptide_extractor(lst):
                    import tensorflow as tf
                    (x, peptide_length) = lst

                    # We generate a per-sample mask that is 1 for all peptide
                    # positions except the first position, and 0 for all other
                    # positions (i.e. n flank, c flank, and the first peptide
                    # position).
                    starts = n_flank_length + 1
                    limits = n_flank_length + peptide_length
                    row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0)
                    mask = tf.logical_and(tf.greater_equal(row, starts),
                                          tf.less(row, limits))

                    # We are assuming that x >= -1. The final activation in the
                    # previous layer should be a function that satisfies this
                    # (e.g. sigmoid, tanh, relu).
                    max_value = tf.reduce_max(
                        (x + 1) *
                        tf.expand_dims(tf.cast(mask, tf.float32), axis=-1),
                        axis=1) - 1

                    # We flip the sign so that initializing the final dense
                    # layer weights to 1s is reasonable.
                    return -1 * max_value

                max_over_peptide = Lambda(max_pool_over_peptide_extractor,
                                          name="%s_internal_cleaved" % flank)([
                                              single_output_result,
                                              model_inputs['peptide_length']
                                          ])

                def flanking_extractor(lst):
                    import tensorflow as tf
                    (x, peptide_length) = lst

                    # mask is 1 for n_flank positions and 0 elsewhere.
                    starts = 0
                    limits = n_flank_length
                    row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0)
                    mask = tf.logical_and(tf.greater_equal(row, starts),
                                          tf.less(row, limits))

                    # We are assuming that x >= -1. The final activation in the
                    # previous layer should be a function that satisfies this
                    # (e.g. sigmoid, tanh, relu).
                    average_value = tf.reduce_mean(
                        (x + 1) *
                        tf.expand_dims(tf.cast(mask, tf.float32), axis=-1),
                        axis=1) - 1
                    return average_value

                if flanking_averages and n_flank_length > 0:
                    # Also include average pooled of flanking sequences
                    pooled_flank = Lambda(flanking_extractor,
                                          name="%s_extracted" % flank)([
                                              convolutional_result,
                                              model_inputs['peptide_length']
                                          ])
                    dense_flank = Dense(1,
                                        activation="tanh",
                                        name="%s_avg_dense" %
                                        flank)(pooled_flank)
            else:
                assert flank == "c_flank"

                def cleavage_extractor(lst):
                    import tensorflow as tf
                    (x, peptide_length) = lst
                    indexer = peptide_length + n_flank_length - 1
                    result = tf.squeeze(
                        tf.gather(x, indexer, batch_dims=1, axis=1), -1)
                    return result

                single_output_at_cleavage_position = Lambda(
                    cleavage_extractor, name="%s_cleaved" % flank)(
                        [single_output_result, model_inputs['peptide_length']])

                def max_pool_over_peptide_extractor(lst):
                    import tensorflow as tf
                    (x, peptide_length) = lst

                    # We generate a per-sample mask that is 1 for all peptide
                    # positions except the last position, and 0 for all other
                    # positions (i.e. n flank, c flank, and the last peptide
                    # position).
                    starts = n_flank_length
                    limits = n_flank_length + peptide_length - 1
                    row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0)
                    mask = tf.logical_and(tf.greater_equal(row, starts),
                                          tf.less(row, limits))

                    # We are assuming that x >= -1. The final activation in the
                    # previous layer should be a function that satisfies this
                    # (e.g. sigmoid, tanh, relu).
                    max_value = tf.reduce_max(
                        (x + 1) *
                        tf.expand_dims(tf.cast(mask, tf.float32), axis=-1),
                        axis=1) - 1

                    # We flip the sign so that initializing the final dense
                    # layer weights to 1s is reasonable.
                    return -1 * max_value

                max_over_peptide = Lambda(max_pool_over_peptide_extractor,
                                          name="%s_internal_cleaved" % flank)([
                                              single_output_result,
                                              model_inputs['peptide_length']
                                          ])

                def flanking_extractor(lst):
                    import tensorflow as tf
                    (x, peptide_length) = lst

                    # mask is 1 for c_flank positions and 0 elsewhere.
                    starts = n_flank_length + peptide_length
                    limits = n_flank_length + peptide_length + c_flank_length
                    row = tf.expand_dims(tf.range(0, x.shape[1]), axis=0)
                    mask = tf.logical_and(tf.greater_equal(row, starts),
                                          tf.less(row, limits))

                    # We are assuming that x >= -1. The final activation in the
                    # previous layer should be a function that satisfies this
                    # (e.g. sigmoid, tanh, relu).
                    average_value = tf.reduce_mean(
                        (x + 1) *
                        tf.expand_dims(tf.cast(mask, tf.float32), axis=-1),
                        axis=1) - 1
                    return average_value

                if flanking_averages and c_flank_length > 0:
                    # Also include average pooled of flanking sequences
                    pooled_flank = Lambda(flanking_extractor,
                                          name="%s_extracted" % flank)([
                                              convolutional_result,
                                              model_inputs['peptide_length']
                                          ])
                    dense_flank = Dense(1,
                                        activation="tanh",
                                        name="%s_avg_dense" %
                                        flank)(pooled_flank)

            outputs_for_final_dense.append(single_output_at_cleavage_position)
            outputs_for_final_dense.append(max_over_peptide)
            if dense_flank is not None:
                outputs_for_final_dense.append(dense_flank)

        if len(outputs_for_final_dense) == 1:
            (current_layer, ) = outputs_for_final_dense
        else:
            current_layer = Concatenate(name="final")(outputs_for_final_dense)
        output = Dense(
            1,
            activation="sigmoid",
            name="output",
            kernel_initializer=initializers.Ones(),
        )(current_layer)
        model = Model(
            inputs=[model_inputs[name] for name in sorted(model_inputs)],
            outputs=[output],
            name="predictor")

        return model
コード例 #4
0
    def __init__(self,
                 sess,
                 ob_space,
                 action_space,
                 nbatch,
                 nsteps,
                 reuse=False):
        # This will use to initialize our kernels
        gain = np.sqrt(2)

        self.tokenizer = Tokenizer(num_words=5000)
        # Based on the action space, will select what probability distribution type
        # we will use to distribute action in our stochastic policy (in our case DiagGaussianPdType
        # aka Diagonal Gaussian, 3D normal distribution)
        self.pdtype = make_pdtype(action_space)

        song_text_shape = (None, 200)

        category_embedding_shape = (None, 1)
        embeddings = []

        girl_1_inputs_ = tf.placeholder(tf.float32,
                                        category_embedding_shape,
                                        name="girl_1_inputs_")
        girl_1_inputs_keras = tf.keras.layers.Input(tensor=girl_1_inputs_)
        embedding_size = EXTRA_SMALL_EMBEDDINGS_DIM
        embedding = Embedding(EXTRA_SMALL_VOCAB_SIZE,
                              embedding_size,
                              input_length=1)(girl_1_inputs_keras)
        embeddings.append(Reshape(target_shape=(embedding_size, ))(embedding))

        girl_2_inputs_ = tf.placeholder(tf.float32,
                                        category_embedding_shape,
                                        name="girl_2_inputs_")
        girl_2_inputs_keras = tf.keras.layers.Input(tensor=girl_2_inputs_)
        embedding_size = EXTRA_SMALL_EMBEDDINGS_DIM
        embedding = Embedding(EXTRA_SMALL_VOCAB_SIZE,
                              embedding_size,
                              input_length=1)(girl_2_inputs_keras)
        embeddings.append(Reshape(target_shape=(embedding_size, ))(embedding))

        girl_3_inputs_ = tf.placeholder(tf.float32,
                                        category_embedding_shape,
                                        name="girl_3_inputs_")
        girl_3_inputs_keras = tf.keras.layers.Input(tensor=girl_3_inputs_)
        embedding_size = EXTRA_SMALL_EMBEDDINGS_DIM
        embedding = Embedding(EXTRA_SMALL_VOCAB_SIZE,
                              embedding_size,
                              input_length=1)(girl_3_inputs_keras)
        embeddings.append(Reshape(target_shape=(embedding_size, ))(embedding))

        girl_4_inputs_ = tf.placeholder(tf.float32,
                                        category_embedding_shape,
                                        name="girl_4_inputs_")
        girl_4_inputs_keras = tf.keras.layers.Input(tensor=girl_4_inputs_)
        embedding_size = EXTRA_SMALL_EMBEDDINGS_DIM
        embedding = Embedding(EXTRA_SMALL_VOCAB_SIZE,
                              embedding_size,
                              input_length=1)(girl_4_inputs_keras)
        embeddings.append(Reshape(target_shape=(embedding_size, ))(embedding))

        current_girl_inputs_ = tf.placeholder(tf.float32,
                                              category_embedding_shape,
                                              name="current_girl_inputs_")
        current_girl_inputs_keras = tf.keras.layers.Input(
            tensor=current_girl_inputs_)
        embedding_size = EXTRA_SMALL_EMBEDDINGS_DIM
        embedding = Embedding(EXTRA_SMALL_VOCAB_SIZE,
                              embedding_size,
                              input_length=1)(current_girl_inputs_keras)
        embeddings.append(Reshape(target_shape=(embedding_size, ))(embedding))

        # Create the input placeholder
        non_category_data_input_ = tf.placeholder(
            tf.float32, (None, GUMBALL_FIELD_REMAINDER),
            name="non_category_data_input")
        combined_inputs_ = tf.placeholder(
            tf.float32, (None, ob_space.shape[1] + MM_EMBEDDINGS_DIM * 2),
            name="combined_input")
        text_inputs_ = tf.placeholder(tf.float32,
                                      song_text_shape,
                                      name="text_input")

        available_moves = tf.placeholder(tf.float32, [None, action_space.n],
                                         name="availableActions")
        """
		Build the model
		Embedding
		LSTM

		3 FC for spatial dependiencies
		1 common FC

		1 FC for policy (actor)
		1 FC for value (critic)

		"""
        with tf.variable_scope('model', reuse=reuse):
            # text reading LSTM
            #			lt_layer = lstm_layer()
            text_inputs_keras = tf.keras.layers.Input(tensor=text_inputs_)

            text_out = lstm_layer(text_inputs_keras)

            shape = text_out.get_shape().as_list()[1:]  # a list: [None, 9, 2]
            dim = np.prod(shape)  # dim = prod(9,2) = 18
            print('text_flatten before reshape', text_out.shape)
            text_flatten = tf.reshape(text_out, [1, -1])  # -1 means "all"

            print('embeds', len(embeddings))
            merged = Concatenate(axis=-1)(embeddings)

            # This returns a tensor
            non_category_data_input_keras = tf.keras.layers.Input(
                tensor=non_category_data_input_)
            categorical_dense = tf.keras.layers.Dense(
                512, activation='relu')(merged)
            categorical_dense = Reshape(
                target_shape=(512, ))(categorical_dense)
            non_categorical_dense = tf.keras.layers.Dense(
                512, activation='relu')(non_category_data_input_keras)

            combined_fields = Concatenate(axis=-1)(
                [non_categorical_dense, categorical_dense])
            #reshape to add dimension?
            comb_shape = combined_fields.get_shape()
            combined_fields = K.expand_dims(combined_fields, 2)
            print('combined_fields expanded dim', combined_fields.get_shape())

            conv1 = Conv1D(
                100,
                10,
                activation='relu',
                batch_input_shape=(
                    None, combined_fields.get_shape()[1]))(combined_fields)
            #			conv1 = Conv1D(100, 10, activation='relu', batch_input_shape=(None, ob_space.shape[1]))(field_inputs_)
            conv1 = Conv1D(100, 10, activation='relu')(conv1)
            conv1 = MaxPooling1D(3)(conv1)
            conv1 = Conv1D(160, 10, activation='relu')(conv1)
            conv1 = Conv1D(160, 10, activation='relu')(conv1)
            conv1 = GlobalAveragePooling1D()(conv1)
            conv1 = Dropout(0.5)(conv1)
            print('conv1 before reshape', conv1.get_shape())
            print('text_out before flatten', text_out.get_shape())

            text_out = Flatten()(text_out)
            print('text_out ater flatten', text_out.get_shape())
            text_dense = tf.keras.layers.Dense(512,
                                               activation='relu')(text_out)
            field_dense = tf.keras.layers.Dense(512, activation='relu')(conv1)
            print('text_dense after dense', text_dense.get_shape())

            #			scaled_image = tf.keras.layers.Lambda(function=lambda tensors: tensors[0] * tensors[1])([image, scale])
            #			fc_common_dense = Lambda(lambda x:K.concatenate([x[0], x[1]], axis=1))([text_dense, field_dense])
            #			fc_common_dense = tf.keras.layers.Concatenate(axis=-1)(list([text_dense, field_dense]))
            fc_common_dense = tf.keras.layers.Concatenate(axis=-1)(list(
                [text_dense, field_dense]))
            fc_common_dense = tf.keras.layers.Dense(
                512, activation='relu')(fc_common_dense)

            #available_moves takes form [0, 0, -inf, 0, -inf...], 0 if action is available, -inf if not.
            fc_act = tf.keras.layers.Dense(256,
                                           activation='relu')(fc_common_dense)
            #			self.pi = tf.keras.layers.Dense(action_space.n, activation='relu')(fc_act)
            self.pi = fc(fc_act, 'pi', action_space.n, init_scale=0.01)

            # Calculate the v(s)
            h3 = tf.keras.layers.Dense(256, activation='relu')(fc_common_dense)
            fc_vf = tf.keras.layers.Dense(1, activation=None)(h3)[:, 0]

#			vf = fc_layer(fc_3, 1, activation_fn=None)[:,0]
#			vf = fc_layer(fc_common_dense, 1, activation_fn=None)[:,0]

        self.initial_state = None
        """
		# Take an action in the action distribution (remember we are in a situation
		# of stochastic policy so we don't always take the action with the highest probability
		# for instance if we have 2 actions 0.7 and 0.3 we have 30% channce to take the second)
		a0 = self.pd.sample()

		# Calculate the neg log of our probability
		neglogp0 = self.pd.neglogp(a0)
		"""

        # perform calculations using available moves lists
        availPi = tf.add(self.pi, available_moves)

        def sample():
            u = tf.random_uniform(tf.shape(availPi))
            return tf.argmax(availPi - tf.log(-tf.log(u)), axis=-1)

        a0 = sample()
        el0in = tf.exp(availPi -
                       tf.reduce_max(availPi, axis=-1, keep_dims=True))
        z0in = tf.reduce_sum(el0in, axis=-1, keep_dims=True)
        p0in = el0in / z0in
        onehot = tf.one_hot(a0, availPi.get_shape().as_list()[-1])
        neglogp0 = -tf.log(tf.reduce_sum(tf.multiply(p0in, onehot), axis=-1))

        # Function use to take a step returns action to take and V(s)
        def step(state_in, valid_moves, ob_texts, *_args, **_kwargs):
            # return a0, vf, neglogp0
            # padd text
            #			print('ob_text', ob_texts)
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                self.tokenizer.fit_on_texts([ob_text])

            ob_text_input = []
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                token = self.tokenizer.texts_to_sequences([ob_text])
                token = sequence.pad_sequences(
                    token, maxlen=MM_MAX_SENTENCE_SIZE)  # pre_padding with 0
                ob_text_input.append(token)
#				print('token', token)
#				print('token shape', token.shape)
            orig_ob_text_input = np.array(ob_text_input)
            shape = orig_ob_text_input.shape
            #			print('ob_text_input shape', shape)
            ob_text_input = orig_ob_text_input.reshape(shape[0], shape[2])

            # Reshape for conv1
            #			state_in = np.expand_dims(state_in, axis=2)
            input_dict = dict({
                text_inputs_: ob_text_input,
                available_moves: valid_moves
            })
            input_dict.update(split_categories_from_state(state_in))

            return sess.run([a0, fc_vf, neglogp0], input_dict)

        # Function that calculates only the V(s)
        def value(state_in, valid_moves, ob_texts, *_args, **_kwargs):
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                self.tokenizer.fit_on_texts([ob_text])

            ob_text_input = []
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                token = self.tokenizer.texts_to_sequences([ob_text])
                token = sequence.pad_sequences(
                    token, maxlen=MM_MAX_SENTENCE_SIZE)  # pre_padding with 0
                ob_text_input.append(token)
#				print('token', token)
#				print('token shape', token.shape)
            ob_text_input = np.array(ob_text_input)
            shape = ob_text_input.shape
            #			print('ob_text_input shape', shape)
            ob_text_input = ob_text_input.reshape(shape[0], shape[2])

            # Reshape for conv1
            #			state_in = np.expand_dims(state_in, axis=2)
            input_dict = dict({
                text_inputs_: ob_text_input,
                available_moves: valid_moves
            })
            input_dict.update(split_categories_from_state(state_in))

            return sess.run(fc_vf, input_dict)
#			return sess.run(vf, {field_inputs_:state_in, text_inputs_:ob_text_input, available_moves:valid_moves})

        def select_action(state_in, valid_moves, ob_texts, *_args, **_kwargs):
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                self.tokenizer.fit_on_texts([ob_text])

            ob_text_input = []
            for ob_text in ob_texts:
                #				print('ob_text', ob_text)
                token = self.tokenizer.texts_to_sequences([ob_text])
                token = sequence.pad_sequences(
                    token, maxlen=MM_MAX_SENTENCE_SIZE)  # pre_padding with 0
                ob_text_input.append(token)
#				print('token', token)
#				print('token shape', token.shape)
            ob_text_input = np.array(ob_text_input)
            shape = ob_text_input.shape
            #			print('ob_text_input shape', shape)
            ob_text_input = ob_text_input.reshape(shape[0], shape[2])

            # Reshape for conv1
            #			state_in = np.expand_dims(state_in, axis=2)
            input_dict = dict({
                text_inputs_: ob_text_input,
                available_moves: valid_moves
            })
            input_dict.update(split_categories_from_state(state_in))

            return sess.run(fc_vf, input_dict)
#			return sess.run(vf, {field_inputs_:state_in, text_inputs_:ob_text_input, available_moves:valid_moves})

        def split_categories_from_state(obs_datas):
            input_mappings = {}
            # Initialize buckets
            current_girl = np.empty([0, 1], dtype=np.float32)
            girl_1 = np.empty([0, 1], dtype=np.float32)
            girl_2 = np.empty([0, 1], dtype=np.float32)
            girl_3 = np.empty([0, 1], dtype=np.float32)
            girl_4 = np.empty([0, 1], dtype=np.float32)
            non_category_data = np.empty([0, GUMBALL_FIELD_REMAINDER],
                                         dtype=np.float32)

            input_mappings[current_girl_inputs_] = current_girl
            input_mappings[girl_1_inputs_] = girl_1
            input_mappings[girl_2_inputs_] = girl_2
            input_mappings[girl_3_inputs_] = girl_3
            input_mappings[girl_4_inputs_] = girl_4
            input_mappings[non_category_data_input_] = non_category_data

            # Everything above only happens once
            for obs_data in obs_datas:

                input_mappings[current_girl_inputs_] = np.append(
                    input_mappings[current_girl_inputs_],
                    np.array([[obs_data[0]]]),
                    axis=0)
                input_mappings[girl_1_inputs_] = np.append(
                    input_mappings[girl_1_inputs_],
                    np.array([[obs_data[1]]]),
                    axis=0)
                input_mappings[girl_2_inputs_] = np.append(
                    input_mappings[girl_2_inputs_],
                    np.array([[obs_data[2]]]),
                    axis=0)
                input_mappings[girl_3_inputs_] = np.append(
                    input_mappings[girl_3_inputs_],
                    np.array([[obs_data[3]]]),
                    axis=0)
                input_mappings[girl_4_inputs_] = np.append(
                    input_mappings[girl_4_inputs_],
                    np.array([[obs_data[4]]]),
                    axis=0)

                # rest of data is numeric observation
                rest_details_index = 5
                input_mappings[non_category_data_input_] = np.append(
                    input_mappings[non_category_data_input_],
                    np.array([obs_data[rest_details_index:]]),
                    axis=0)

            return input_mappings

        self.availPi = availPi
        self.split_categories_from_state = split_categories_from_state
        self.text_inputs_ = text_inputs_
        self.available_moves = available_moves
        self.vf = fc_vf
        #		self.fc_vf = fc_vf
        self.step = step
        self.value = value
        self.select_action = select_action
        print('this did finish')
コード例 #5
0
def model_b(n_classes=5, use_sub_layer=False, use_rnn=True, verbose=False):
    """Recurrent_Deep_Neural_Networks_for_Real-Time_Sleep
    """
    inputLayer = Input(shape=(3000, 1), name='inLayer')
    convFine = Conv1D(filters=512,
                      kernel_size=int(Fs / 2),
                      strides=int(Fs / 16),
                      padding='same',
                      activation='relu',
                      name='fConv1')(inputLayer)

    convFine = MaxPool1D(pool_size=8, strides=8, name='fMaxP1')(convFine)

    convFine = Conv1D(filters=512,
                      kernel_size=8,
                      padding='same',
                      activation='relu',
                      name='fConv2')(convFine)
    convFine = Conv1D(filters=512,
                      kernel_size=8,
                      padding='same',
                      activation='relu',
                      name='fConv3')(convFine)
    convFine = Conv1D(filters=512,
                      kernel_size=8,
                      padding='same',
                      activation='relu',
                      name='fConv4')(convFine)
    convFine = Conv1D(filters=512,
                      kernel_size=8,
                      padding='same',
                      activation='relu',
                      name='fConv5')(convFine)
    convFine = MaxPool1D(pool_size=2, strides=4, name='fMaxP2')(convFine)
    fineShape = convFine.get_shape()
    convFine = Flatten(name='fFlat1')(convFine)

    # network to learn coarse features

    convCoarse = Conv1D(filters=256,
                        kernel_size=Fs * 4,
                        strides=int(Fs / 2),
                        padding='same',
                        activation='relu',
                        name='cConv1')(inputLayer)

    convCoarse = MaxPool1D(pool_size=4, strides=4, name='cMaxP1')(convCoarse)
    convCoarse = Dropout(rate=0.5, name='cDrop1')(convCoarse)
    convCoarse = Conv1D(filters=256,
                        kernel_size=6,
                        padding='same',
                        activation='relu',
                        name='cConv2')(convCoarse)
    convCoarse = Conv1D(filters=256,
                        kernel_size=6,
                        padding='same',
                        activation='relu',
                        name='cConv3')(convCoarse)
    convCoarse = Conv1D(filters=256,
                        kernel_size=6,
                        padding='same',
                        activation='relu',
                        name='cConv4')(convCoarse)
    convCoarse = Conv1D(filters=256,
                        kernel_size=6,
                        padding='same',
                        activation='relu',
                        name='cConv5')(convCoarse)

    convCoarse = MaxPool1D(pool_size=2, strides=2, name='cMaxP2')(convCoarse)
    coarseShape = convCoarse.get_shape()
    convCoarse = Flatten(name='cFlat1')(convCoarse)

    # concatenate coarse and fine cnns
    mergeLayer = concatenate([convFine, convCoarse], name='merge_1')
    outLayer = Dropout(rate=0.5, name='mDrop1')(mergeLayer)

    outLayer = Reshape((1, outLayer.get_shape()[1]), name='reshape1')(outLayer)
    outLayer = LSTM(64, return_sequences=True)(outLayer)
    outLayer = LSTM(64, return_sequences=False)(outLayer)

    # Classify
    outLayer = Dense(n_classes, activation='softmax',
                     name='outLayer')(outLayer)
    model = Model(inputLayer, outLayer)
    optimizer = Adam(lr=1e-4)
    model.compile(optimizer=optimizer,
                  loss='categorical_crossentropy',
                  metrics=['acc'])
    if verbose:
        model.summary()
    return model
コード例 #6
0
class ZeepSenseEasy():
    def __init__(self):
        gpus = tf.config.experimental.list_physical_devices('GPU')
        #gpus = None
        if gpus:
            # Restrict TensorFlow to only allocate 1GB of memory on the first GPU
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpus[0],
                    [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
                logical_gpus = tf.config.experimental.list_logical_devices('GPU')
                print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)

        self.single_img_length = 200

        self.single_input = keras.Input(shape=(2*self.single_img_length, 10 * self.single_img_length, 3), \
                                        name="Input")
        self.acce_input = self.single_input[:, 0:self.single_img_length, :, :]
        self.gyro_input = self.single_input[:, self.single_img_length:, :, :]
        self.acce_input = Reshape((10, self.single_img_length, self.single_img_length, 3), name="Input_acce")(
            self.acce_input)
        self.gyro_input = Reshape((10, self.single_img_length, self.single_img_length, 3), name="Input_gyro")(
            self.gyro_input)
        acc_input_dim = self.acce_input.get_shape()
        print(acc_input_dim)
        gyro_input_dim = self.gyro_input.get_shape()
        print(gyro_input_dim)
        self.conv1a = Conv3D(64, (1, 5, 5), (1, 3, 3),
                                    name="conv_acce_1",
                                    kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
                                    )(self.acce_input)
        # self.conv1a = self.acce_input
        # self.conv1a = BatchNormalization(name="conv_acce_1_batchnorm")(self.conv1a)
        self.conv1a = Activation("relu", name="conv_acce_1_relu")(self.conv1a)
        self.conv1a = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, self.conv1a.shape[-1]], name="conv_acce_1_dropout")(
            self.conv1a)
        self.conv1a = AveragePooling3D((1, 2, 2),name="conv_acce_1_pool")(self.conv1a)
        acc_conv1a_dim = self.conv1a.get_shape()
        print(acc_conv1a_dim)

        self.conv2a = Conv3D(64, (1, 3, 3), (1, 1, 1),
                                    name="conv_acce_2",
                                    padding="SAME",
                                    kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
                                    )(self.conv1a)
        # self.conv2a = BatchNormalization(name="conv_acce_2_batchnorm")(self.conv2a)
        self.conv2a = Activation("relu", name="conv_acce_2_relu")(self.conv2a)
        self.conv2a = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, self.conv1a.shape[-1]], name="conv_acce_2_dropout")(
            self.conv2a)
        self.conv2a = AveragePooling3D((1, 2, 2), name="conv_acce_2_pool")(self.conv1a)
        # self.conv3a = Conv3D(64, (1, 3, 3), (1, 2, 2),
        #                             name="conv_acce_3",
        #                             kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
        #                             )(self.conv2a)
        # # self.conv3a = BatchNormalization(name="conv_acce_3_batchnorm")(self.conv3a)
        # self.conv3a = Activation("relu", name="conv_acce_3_relu")(self.conv3a)
        # self.conv3a = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, 64], name="conv_acce_3_dropout")(
        #     self.conv3a)
        acc_conv2a_dim = self.conv2a.get_shape()
        print(acc_conv2a_dim)

        self.acce_output = Reshape((10, 1, 16*16, self.conv1a.shape[-1]), name="output_acce")(self.conv2a)
        # self.acce_output = self.conv3a
        # self.acce_output = AveragePooling3D((1,3,3),(1,2,2))(self.conv3a)
        # self.acce_output = Reshape((10,1,10*10,64),name="output_acce")(self.acce_output)
        # **********************************************************************************************
        acc_output_dim = self.acce_output.get_shape()
        print(acc_output_dim)
        self.conv1g = Conv3D(64, (1, 5, 5), (1, 3, 3),
                                    name="conv_gyro_1",
                                    kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
                                    )(self.gyro_input)
        # self.conv1g = self.gyro_input
        # self.conv1g = BatchNormalization(name="conv_gyro_1_batchnorm")(self.conv1g)
        self.conv1g = Activation("relu", name="conv_gyro_1_relu")(self.conv1g)
        self.conv1g = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, self.conv1g.shape[-1]], name="conv_gyro_1_dropout")(
            self.conv1g)
        self.conv1g = AveragePooling3D((1, 2, 2), name="conv_gyro_1_pool")(self.conv1g)
        gyro_conv1g_dim = self.conv1g.get_shape()
        print(gyro_conv1g_dim)
        self.conv2g = Conv3D(64, (1, 3, 3), (1, 1, 1),
                                    name="conv_gyro_2",
                                    padding="SAME",
                                    kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
                                    )(self.conv1g)
        # self.conv2g = BatchNormalization(name="conv_gyro_2_batchnorm")(self.conv2g)
        self.conv2g = Activation("relu", name="conv_gyro_2_relu")(self.conv2g)
        self.conv2g = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, self.conv2g.shape[-1]],
                              name="conv_gyro_2_dropout")(self.conv2g)
        self.conv2g = AveragePooling3D((1, 2, 2), name="conv_gyro_2_pool")(self.conv1g)
        # self.conv3g = Conv3D(64, (1, 3, 3), (1, 2, 2),
        #                             name="conv_gyro_3",
        #                             kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
        #                             )(self.conv2g)
        # # self.conv3g = BatchNormalization(name="conv_gyro_3_batchnorm")(self.conv3g)
        # self.conv3g = Activation("relu", name="conv_gyro_3_relu")(self.conv3g)
        # self.conv3g = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, 64], name="conv_gyro_3_dropout")(
        #     self.conv3g)
        gyro_conv2g_dim = self.conv2g.get_shape()
        print(gyro_conv2g_dim)
        self.gyro_output = Reshape((10, 1, 16*16, self.conv1g.shape[-1]), name="output_gyro")(self.conv2g)
        # self.gyro_output = self.conv3g
        # self.gyro_output = AveragePooling3D((1,3,3),(1,2,2))(self.conv3g)
        # self.gyro_output = Reshape((10,1,10*10,64),name="output_gyro")(self.gyro_output)
        # ***********************************************************************************************************************
        gyro_output_dim = self.gyro_output.get_shape()
        print(gyro_output_dim)
#============================no attention===========================================
        self.merge_noattention = concatenate([self.acce_output,self.gyro_output],axis = -3, name = "input_merge")
        self.merge_input = self.merge_noattention

#==============================attention====================================================
        #self.merge_input = concatenate([self.acce_output, self.gyro_output], axis=-3, name="Input_merge")
        #self.merge_attention_input = Reshape((10,2,self.merge_input.shape[-2]*self.merge_input.shape[-1]))(self.merge_input)
        #self.merge_attention = tf.matmul(self.merge_attention_input,self.merge_attention_input,transpose_b=True)
        #self.merge_attention = tf.matmul(tf.ones((1,2),dtype=tf.float32),self.merge_attention)
        #softmax_layer = Softmax(axis = -1)
        #self.merge_attention = softmax_layer(self.merge_attention)
        #merge_attention_dim = self.merge_attention.get_shape()
        #print("merge_attention_dim")
        #print(merge_attention_dim)
        #self.merge_attention_output = tf.matmul(self.merge_attention,self.merge_attention_input)
        #self.merge_attention_output = Reshape((10,16,16,64))(self.merge_attention_output)
        #merge_attention_output_dim = self.merge_attention_output.get_shape()
        #print("merge_attention_output_dim")
        #print(merge_attention_output_dim)
        #self.merge_input = self.merge_attention_output
#===========================================================================================
        self.conv1 = Conv3D(64, kernel_size=(1,2,5),
                                   name='conv_merge_1',
                                   strides=( 1, 1,1),
                                   # padding='SAME',
                                   kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
                                   )(self.merge_input)
        merge_conv1_dim = self.conv1.get_shape()
        print("merge_conv1_dim")
        print(merge_conv1_dim)
        # self.conv1 = BatchNormalization(name="conv_merge_1_batchnorm")(self.conv1)
        self.conv1 = Activation("relu", name="conv_merge_1_relu")(self.conv1)
        self.conv1 = Dropout(0.2, noise_shape=[BATCH_SIZE, 1, 1, 1, self.conv1.shape[-1]],
                             name="conv_merge_1_dropout")(self.conv1)
        self.conv1 = AveragePooling3D((1, 1,3))(self.conv1)

        # self.conv2 = Conv3D(64, kernel_size=(1, 1, 5),
        #                            name="conv_merge_2",
        #                            strides=(1, 1, 3),
        #                            #  padding='SAME',
        #                            kernel_regularizer=keras.regularizers.l2(REGULARIZER_RATE)
        #                            )(self.conv1)
        # # self.conv2 = BatchNormalization(name="conv_merge_2_batchnorm")(self.conv2)
        # self.conv2 = Activation("relu", name="conv_merge_2_relu")(self.conv2)
        # self.conv2 = Dropout(DROPOUT_RATIO, noise_shape=[BATCH_SIZE, 1, 1, 1, 64], name="conv_merge_2_dropout")(
        #     self.conv2)

        self.conv_output = self.conv1
        self.rnn_input = Reshape((10, self.conv_output.shape[-1] * 84), name="Output_merge")(self.conv_output)

        self.rnn = LSTM(120, return_sequences=True, name="RNN_1")(self.rnn_input)
        self.sum_rnn_out = tf.reduce_sum(self.rnn, axis=1, keep_dims=False)
        self.rnn = LSTM(20, name="RNN_2")(self.rnn)
        self.rnn_output = Dense(6, 'softmax', name="Softmax")(self.rnn)

        self.model = keras.Model(
            inputs=self.single_input,
            outputs=self.rnn_output)

    def train(self, file_dir, val_dir, epochs, save_dir=None):

        self.model.compile(optimizer=keras.optimizers.Adam(),
                           loss=keras.losses.SparseCategoricalCrossentropy(),
                           metrics=['acc'])

        data_init = Tfdata(file_dir)
        data = data_init.acquire_data()

        val_data_init = Tfdata(val_dir)
        val_data = val_data_init.acquire_data(False)

        print("Training results:")

        self.history = LossHistory()

        self.model.fit(data,
                       epochs=epochs,
                       verbose=2,
                       validation_data=val_data,
                       callbacks=[self.history])

        # self.model.save(save_dir)

    def evaluate(self, val_dir):
        val_data_init = Tfdata(val_dir)
        val_data = val_data_init.acquire_data(False)

        print("y_true in evaluation")
        print(val_data_init.raw_labels)

        Y_pred = self.model.predict(val_data)
        y_pred = np.argmax(Y_pred, axis=1)
        y_true = val_data_init.raw_labels[0:len(y_pred) // BATCH_SIZE * BATCH_SIZE]
        print("y_ture in confusion matrix.")
        print(y_true)
        output_matrix = confusion_matrix(y_true, y_pred) / (len(y_true) / 6)

        plt.figure(2)
        class_names = GESTURES
        tick_marks = np.arange(len(class_names))
        plt.xticks(tick_marks, class_names, rotation=30)
        plt.yticks(tick_marks, class_names)
        plt.imshow(output_matrix, cmap=plt.cm.Reds)
        plt.xlabel("predicted labels", fontsize='large')
        plt.ylabel("true labels", fontsize="large")
        plt.title("Normalized Confusion Matrix")
        plt.colorbar(orientation='vertical')
        plt.savefig("GAF4ZS/f200/confusion_matrix100.jpg", bbox_inches='tight')
        plt.tight_layout()
        plt.close(2)

        f1 = metrics.f1_score(y_true, y_pred, average='micro')
        f2 = metrics.f1_score(y_true, y_pred, average='macro')
        print('micro f1 score: {}, macro f1 score:{}'.format(f1,f2))