def __init__(self, num_units, activation=None, reuse=None, name=None, dtype=None, **kwargs): """Initializes the parameters for an RNN cell. Args: num_units: int, The number of units in the RNN cell. activation: Nonlinearity to use. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. Raises an error if not `True` and the existing scope already has the given variables. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). Raises: ValueError: If the existing scope already has the given variables. """ super(TfLiteRNNCell, self).__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) # Inputs must be Rank-2. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceRnn") self._num_units = num_units if activation: if activation != "tanh": raise ValueError("activation other than tanh is not supported") self._activation = math_ops.tanh else: self._activation = math_ops.tanh
class TfLiteRNNCell(rnn_cell_impl.LayerRNNCell): """The most basic RNN cell. This is used only for TfLite, it provides hints and it also makes the variables in the desired for the tflite ops. """ def __init__(self, num_units, activation=None, reuse=None, name=None, dtype=None, **kwargs): """Initializes the parameters for an RNN cell. Args: num_units: int, The number of units in the RNN cell. activation: Nonlinearity to use. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. Raises an error if not `True` and the existing scope already has the given variables. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). Raises: ValueError: If the existing scope already has the given variables. """ super(TfLiteRNNCell, self).__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) # Inputs must be Rank-2. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceRnn") self._num_units = num_units if activation: self._activation = activations.get(activation) else: self._activation = math_ops.tanh @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def build(self, inputs_shape): """Builds the RNN cell. Args: inputs_shape: Rnn input tensor shape. Raises: ValueError: If last dimension of the input shape is not known. """ if inputs_shape[-1] is None: raise ValueError( "Expected inputs.shape[-1] to be known, saw shape: %s" % (inputs_shape, )) input_depth = inputs_shape[-1] def add_variable_wrapped(name, shape, initializer, index): var = self.add_weight(name, shape=shape, initializer=initializer) return self._tflite_wrapper.add_input(var, name=name, index_override=index) self._input_weights = add_variable_wrapped( "input_weights", [self._num_units, input_depth], None, 1) self._recurrent_weights = add_variable_wrapped( "recurrent_weights", [self._num_units, self._num_units], None, 2) self._bias = add_variable_wrapped( "bias", shape=[self._num_units], initializer=init_ops.zeros_initializer(dtype=self.dtype), index=3) self.built = True def call(self, inputs, state): """Most basic RNN: output = new_state = act(W * input + U * state + B).""" inputs = self._tflite_wrapper.add_input(inputs, tag="input", name="input", aggregate="stack", index_override=0) state = self._tflite_wrapper.add_input(state, tag="hidden_state", name="hidden_state", aggregate="first", index_override=4) weights = array_ops.transpose( array_ops.concat([self._input_weights, self._recurrent_weights], 1)) gate_inputs = math_ops.matmul(array_ops.concat([inputs, state], 1), weights) gate_inputs = nn_ops.bias_add(gate_inputs, self._bias) output = self._activation(gate_inputs) output = self._tflite_wrapper.add_output(output, tag="output", name="output", index_override=1, aggregate="stack") return output, output def get_config(self): config = { "num_units": self._num_units, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super(TfLiteRNNCell, self).get_config() return dict( itertools.chain(list(base_config.items()), list(config.items())))
def __init__(self, num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None, dtype=None): """Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell. use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`. num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead. """ super(TFLiteLSTMCell, self).__init__(_reuse=reuse, name=name, dtype=dtype) # TODO(raziel): decide if we want to just support tuples (yes please!). if not state_is_tuple: logging.warn( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if num_unit_shards is not None or num_proj_shards is not None: logging.warn( "%s: The num_unit_shards and proj_unit_shards parameters are " "deprecated and will be removed in Jan 2017. " "Use a variable scope with a partitioner instead.", self) # Inputs must be 2-dimensional. # TODO(raziel): layers stuff -- chop if un-layerizing Op. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceLstm") self._num_units = num_units self._use_peepholes = use_peepholes self._cell_clip = cell_clip self._initializer = initializer self._num_proj = num_proj self._proj_clip = proj_clip self._num_unit_shards = num_unit_shards self._num_proj_shards = num_proj_shards self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation or math_ops.tanh self._output_size = num_proj if num_proj else num_units self._state_size = (rnn_cell_impl.LSTMStateTuple( num_units, self._output_size) if state_is_tuple else num_units + self._output_size)
class TFLiteLSTMCell(rnn_cell_impl.LayerRNNCell): """Long short-term memory unit (LSTM) recurrent network cell. This is used only for TfLite, it provides hints and it also makes the variables in the desired for the tflite ops (transposed and seaparated). The default non-peephole implementation is based on: https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf Felix Gers, Jurgen Schmidhuber, and Fred Cummins. "Learning to forget: Continual prediction with LSTM." IET, 850-855, 1999. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network architectures for large scale acoustic modeling." INTERSPEECH, 2014. The class uses optional peep-hole connections, optional cell clipping, and an optional projection layer. Note that this cell is not optimized for performance. Please use `tf.contrib.cudnn_rnn.CudnnLSTM` for better performance on GPU, or `tf.contrib.rnn.LSTMBlockCell` and `tf.contrib.rnn.LSTMBlockFusedCell` for better performance on CPU. """ def __init__(self, num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None, dtype=None): """Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell. use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`. num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead. """ super(TFLiteLSTMCell, self).__init__(_reuse=reuse, name=name, dtype=dtype) # TODO(raziel): decide if we want to just support tuples (yes please!). if not state_is_tuple: logging.warn( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if num_unit_shards is not None or num_proj_shards is not None: logging.warn( "%s: The num_unit_shards and proj_unit_shards parameters are " "deprecated and will be removed in Jan 2017. " "Use a variable scope with a partitioner instead.", self) # Inputs must be 2-dimensional. # TODO(raziel): layers stuff -- chop if un-layerizing Op. self.input_spec = base_layer.InputSpec(ndim=2) self._tflite_wrapper = OpHint("UnidirectionalSequenceLstm") self._num_units = num_units self._use_peepholes = use_peepholes self._cell_clip = cell_clip self._initializer = initializer self._num_proj = num_proj self._proj_clip = proj_clip self._num_unit_shards = num_unit_shards self._num_proj_shards = num_proj_shards self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation or math_ops.tanh self._output_size = num_proj if num_proj else num_units self._state_size = (rnn_cell_impl.LSTMStateTuple( num_units, self._output_size) if state_is_tuple else num_units + self._output_size) @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size def build(self, inputs_shape): """Build TfLite LSTM cell graph. Args: inputs_shape: The inputs_shape must be known, and is [batch_size, input_size] shape. Raises: ValueError: if the inputs_shape is invalid. """ if len(inputs_shape) != 2: raise ValueError( "inputs_shape must be 2-dimensional, saw shape: %s" % inputs_shape) input_depth = (inputs_shape[1] if isinstance(inputs_shape[1], int) else inputs_shape[1].value) if input_depth is None: raise ValueError("Invalid inputs_shape, saw shape: %s" % inputs_shape) maybe_partitioner = (partitioned_variables.fixed_size_partitioner( self._num_unit_shards) if self._num_unit_shards is not None else None) input_weight_shape = [self._num_units, input_depth] cell_weight_shape = [self._num_units, self._output_size] bias_shape = [self._num_units] def add_variable_wrapped(name, shape, initializer, index, partitioner): var = self.add_weight(name, shape=shape, initializer=initializer, partitioner=partitioner) return self._tflite_wrapper.add_input(var, name=name, index_override=index) weight_initializer = self._initializer if self.dtype is None: bias_initializer = init_ops.zeros_initializer else: bias_initializer = init_ops.zeros_initializer(dtype=self.dtype) forget_bias_initializer = init_ops.constant_initializer( self._forget_bias) self.input_to_input_w = add_variable_wrapped("input_to_input_w", input_weight_shape, weight_initializer, 1, maybe_partitioner) self.input_to_forget_w = add_variable_wrapped("input_to_forget_w", input_weight_shape, weight_initializer, 2, maybe_partitioner) self.input_to_cell_w = add_variable_wrapped("input_to_cell_w", input_weight_shape, weight_initializer, 3, maybe_partitioner) self.input_to_output_w = add_variable_wrapped("input_to_output_w", input_weight_shape, weight_initializer, 4, maybe_partitioner) self.cell_to_input_w = add_variable_wrapped("cell_to_input_w", cell_weight_shape, weight_initializer, 5, maybe_partitioner) self.cell_to_forget_w = add_variable_wrapped("cell_to_forget_w", cell_weight_shape, weight_initializer, 6, maybe_partitioner) self.cell_to_cell_w = add_variable_wrapped("cell_to_cell_w", cell_weight_shape, weight_initializer, 7, maybe_partitioner) self.cell_to_output_w = add_variable_wrapped("cell_to_output_w", cell_weight_shape, weight_initializer, 8, maybe_partitioner) self.input_bias = add_variable_wrapped("input_bias", bias_shape, bias_initializer, 12, maybe_partitioner) self.forget_bias = add_variable_wrapped("forget_bias", bias_shape, forget_bias_initializer, 13, maybe_partitioner) self.cell_bias = add_variable_wrapped("cell_bias", bias_shape, bias_initializer, 14, maybe_partitioner) self.output_bias = add_variable_wrapped("output_bias", bias_shape, bias_initializer, 15, maybe_partitioner) # index 9, 10, 11. # f stands for forget, i stands for input and o stands for output. if self._use_peepholes: self._w_f_diag = add_variable_wrapped("w_f_diag", [self._num_units], self._initializer, 10, maybe_partitioner) self._w_i_diag = add_variable_wrapped("w_i_diag", [self._num_units], self._initializer, 9, maybe_partitioner) self._w_o_diag = add_variable_wrapped("w_o_diag", [self._num_units], self._initializer, 11, maybe_partitioner) # index 16 for proj kernel. if self._num_proj is not None: maybe_proj_partitioner = ( partitioned_variables.fixed_size_partitioner( self._num_proj_shards) if self._num_proj_shards is not None else None) self._proj_kernel = add_variable_wrapped( "projection/kernel", [self._num_proj, self._num_units], self._initializer, 16, partitioner=maybe_proj_partitioner) self.built = True def call(self, inputs, state): """Run one step of LSTM. Args: inputs: input Tensor, 2D, `[batch, num_units]`. state: if `state_is_tuple` is False, this must be a state Tensor, `2-D, [batch, state_size]`. If `state_is_tuple` is True, this must be a tuple of state Tensors, both `2-D`, with column sizes `c_state` and `m_state`. Returns: A tuple containing: - A `2-D, [batch, output_dim]`, Tensor representing the output of the LSTM after reading `inputs` when previous state was `state`. Here output_dim is: num_proj if num_proj was set, num_units otherwise. - Tensor(s) representing the new state of LSTM after reading `inputs` when the previous state was `state`. Same type and shape(s) as `state`. Raises: ValueError: If input size cannot be inferred from inputs via static shape inference. """ inputs = self._tflite_wrapper.add_input(inputs, tag="input", name="input", aggregate="stack", index_override=0) # Make sure inputs and bias_initializer has the same type. assert inputs.dtype == self.input_to_input_w.dtype num_proj = self._num_units if self._num_proj is None else self._num_proj sigmoid = math_ops.sigmoid if self._state_is_tuple: (c_prev, m_prev) = state else: c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units]) m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj]) # Note: For TfLite, cell_state is at index 19 while activation state at # index 18. c_prev = self._tflite_wrapper.add_input(c_prev, tag="c_prev", name="c_prev", aggregate="first", index_override=19) m_prev = self._tflite_wrapper.add_input(m_prev, tag="m_prev", name="m_prev", aggregate="first", index_override=18) input_size = inputs.shape.with_rank(2).dims[1] if input_size.value is None: raise ValueError( "Could not infer input size from inputs.shape[-1]") inputs_and_m_prev = array_ops.concat([inputs, m_prev], axis=1) # i stands for input gate. # f stands for forget gate activation. # o outputs. # j output of LSTM unit. # c is the final state. # m is the output. i = nn_ops.bias_add( math_ops.matmul(inputs_and_m_prev, array_ops.concat( [self.input_to_input_w, self.cell_to_input_w], axis=1), transpose_b=True), self.input_bias) f = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat( [self.input_to_forget_w, self.cell_to_forget_w], axis=1), transpose_b=True), self.forget_bias) o = nn_ops.bias_add( math_ops.matmul( inputs_and_m_prev, array_ops.concat( [self.input_to_output_w, self.cell_to_output_w], axis=1), transpose_b=True), self.output_bias) j = nn_ops.bias_add( math_ops.matmul(inputs_and_m_prev, array_ops.concat( [self.input_to_cell_w, self.cell_to_cell_w], axis=1), transpose_b=True), self.cell_bias) # Diagonal connections if self._use_peepholes: c = (sigmoid(f + self._w_f_diag * c_prev) * c_prev + sigmoid(i + self._w_i_diag * c_prev) * self._activation(j)) else: c = (sigmoid(f) * c_prev + sigmoid(i) * self._activation(j)) if self._cell_clip is not None: # pylint: disable=invalid-unary-operand-type c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip) # pylint: enable=invalid-unary-operand-type if self._use_peepholes: m = sigmoid(o + self._w_o_diag * c) * self._activation(c) else: m = sigmoid(o) * self._activation(c) if self._num_proj is not None: transposed_proj_kernel = array_ops.transpose(self._proj_kernel) m = math_ops.matmul(m, transposed_proj_kernel) if self._proj_clip is not None: # pylint: disable=invalid-unary-operand-type m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip) # pylint: enable=invalid-unary-operand-type c = self._tflite_wrapper.add_output(c, tag="c", name="c", aggregate="last", index_override=1) m = self._tflite_wrapper.add_output(m, tag="m", name="m", index_override=2, aggregate="stack") new_state = (rnn_cell_impl.LSTMStateTuple(c, m) if self._state_is_tuple else array_ops.concat([c, m], 1)) return m, new_state def get_config(self): config = { "num_units": self._num_units, "use_peepholes": self._use_peepholes, "cell_clip": self._cell_clip, "initializer": initializers.serialize(self._initializer), "num_proj": self._num_proj, "proj_clip": self._proj_clip, "num_unit_shards": self._num_unit_shards, "num_proj_shards": self._num_proj_shards, "forget_bias": self._forget_bias, "state_is_tuple": self._state_is_tuple, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super(TFLiteLSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=True, scope=None): """Creates a recurrent neural network specified by RNNCell `cell`. Performs fully dynamic unrolling of `inputs`. Example: ```python # create a BasicRNNCell rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size) # 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size] # defining initial state initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32) # 'state' is a tensor of shape [batch_size, cell_state_size] outputs, state = tf.compat.v1.nn.dynamic_rnn(rnn_cell, input_data, initial_state=initial_state, dtype=tf.float32) ``` ```python # create 2 LSTMCells rnn_layers = [tf.compat.v1.nn.rnn_cell.LSTMCell(size) for size in [128, 256]] # create a RNN cell composed sequentially of a number of RNNCells multi_rnn_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(rnn_layers) # 'outputs' is a tensor of shape [batch_size, max_time, 256] # 'state' is a N-tuple where N is the number of LSTMCells containing a # tf.nn.rnn_cell.LSTMStateTuple for each cell outputs, state = tf.compat.v1.nn.dynamic_rnn(cell=multi_rnn_cell, inputs=data, dtype=tf.float32) ``` Args: cell: An instance of RNNCell. inputs: The RNN inputs. If `time_major == False` (default), this must be a `Tensor` of shape: `[batch_size, max_time, ...]`, or a nested tuple of such elements. If `time_major == True`, this must be a `Tensor` of shape: `[max_time, batch_size, ...]`, or a nested tuple of such elements. This may also be a (possibly nested) tuple of Tensors satisfying this property. The first two dimensions must match across all the inputs, but otherwise the ranks and other shape components may differ. In this case, input to `cell` at each time-step will replicate the structure of these tuples, except for the time dimension (from which the time is taken). The input to `cell` at each time step will be a `Tensor` or (possibly nested) tuple of Tensors each with dimensions `[batch_size, ...]`. sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. Used to copy-through state and zero-out outputs when past a batch element's sequence length. So it's more for performance than correctness. initial_state: (optional) An initial state for the RNN. If `cell.state_size` is an integer, this must be a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`. If `cell.state_size` is a tuple, this should be a tuple of tensors having shapes `[batch_size, s] for s in cell.state_size`. dtype: (optional) The data type for the initial state and expected output. Required if initial_state is not provided or RNN state has a heterogeneous dtype. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "rnn". Returns: A pair (outputs, state) where: outputs: The RNN output `Tensor`. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. Note, if `cell.output_size` is a (possibly nested) tuple of integers or `TensorShape` objects, then `outputs` will be a tuple having the same structure as `cell.output_size`, containing Tensors having shapes corresponding to the shape data in `cell.output_size`. state: The final state. If `cell.state_size` is an int, this will be shaped `[batch_size, cell.state_size]`. If it is a `TensorShape`, this will be shaped `[batch_size] + cell.state_size`. If it is a (possibly nested) tuple of ints or `TensorShape`, this will be a tuple having the corresponding shapes. If cells are `LSTMCells` `state` will be a tuple containing a `LSTMStateTuple` for each cell. Raises: TypeError: If `cell` is not an instance of RNNCell. ValueError: If inputs is None or an empty list. RuntimeError: If not using control flow v2. """ # Currently only support time_major == True case. assert time_major # TODO(b/123051275): We need to check if the cells are TfLiteLSTMCells or # TfLiteRNNCells. rnn_cell_impl.assert_like_rnncell("cell", cell) if not control_flow_util.ENABLE_CONTROL_FLOW_V2: raise RuntimeError("OpHint dynamic rnn only supports control flow v2.") parent_first_child_input = [{ "parent_ophint_input_index": 0, "first_child_ophint_input_index": 0 }] parent_last_child_output = [{ "parent_output_index": 0, # For LstmCell, the index is 2. # For RnnCell, the index is 1. # So we use -1 meaning it's the last one. "child_output_index": -1 }] internal_children_input_output = [{ "child_input_index": 0, # For LstmCell, the index is 2. # For RnnCell, the index is 1. # So we use -1 meaning it's the last one. "child_output_index": -1 }] inputs_outputs_mappings = { "parent_first_child_input": parent_first_child_input, "parent_last_child_output": parent_last_child_output, "internal_children_input_output": internal_children_input_output } tflite_wrapper = OpHint( "TfLiteDynamicRnn", level=2, children_inputs_mappings=inputs_outputs_mappings) with vs.variable_scope(scope or "rnn") as varscope: # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. if _should_cache(): if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) inputs = tflite_wrapper.add_input(inputs, name="input", index_override=0) # By default, time_major==False and inputs are batch-major: shaped # [batch, time, depth] # For internal calculations, we transpose to [time, batch, depth] flat_input = nest.flatten(inputs) if not time_major: # (batch, time, depth) => (time, batch, depth) flat_input = [ops.convert_to_tensor(input_) for input_ in flat_input] flat_input = tuple(_transpose_batch_time(input_) for input_ in flat_input) parallel_iterations = parallel_iterations or 32 if sequence_length is not None: sequence_length = math_ops.cast(sequence_length, dtypes.int32) if sequence_length.shape.rank not in (None, 1): raise ValueError( "sequence_length must be a vector of length batch_size, " "but saw shape: %s" % sequence_length.shape) sequence_length = array_ops.identity( # Just to find it in the graph. sequence_length, name="sequence_length") batch_size = _best_effort_input_batch_size(flat_input) if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If there is no initial_state, you must give a dtype.") if getattr(cell, "get_initial_state", None) is not None: state = cell.get_initial_state( inputs=None, batch_size=batch_size, dtype=dtype) else: state = cell.zero_state(batch_size, dtype) def _assert_has_shape(x, shape): x_shape = array_ops.shape(x) packed_shape = array_ops.stack(shape) return control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), [ "Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape ]) if not context.executing_eagerly() and sequence_length is not None: # Perform some shape validation with ops.control_dependencies( [_assert_has_shape(sequence_length, [batch_size])]): sequence_length = array_ops.identity( sequence_length, name="CheckSeqLen") inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input) outputs, final_state = _dynamic_rnn_loop( cell, inputs, state, parallel_iterations=parallel_iterations, swap_memory=swap_memory, sequence_length=sequence_length, dtype=dtype) # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth]. # If we are performing batch-major calculations, transpose output back # to shape [batch, time, depth] if not time_major: # (time, batch, depth) => (batch, time, depth) outputs = nest.map_structure(_transpose_batch_time, outputs) outputs = tflite_wrapper.add_output(outputs, name="outputs") return outputs, final_state