def test_mobilenet_v2(self, quantization_type): saved_model_dir = model_coverage.get_filepath( "keras_applications/mobilenet_v2_tf2") converter = _lite.TFLiteConverterV2.from_saved_model(saved_model_dir) img_array = keras.applications.inception_v3.preprocess_input( model_coverage.get_image(224)) self._test_quantization_goldens(quantization_type, converter, input_data=[img_array], golden_name="mobilenet_v2_%s" % quantization_type.value)
def test_inception_v3(self, quantization_type): keras_model = keras.models.load_model( model_coverage.get_filepath("keras_applications/inception_v3.h5")) keras_model.inputs[0].set_shape([1, 299, 299, 3]) converter = _lite.TFLiteConverterV2.from_keras_model(keras_model) img_array = keras.applications.inception_v3.preprocess_input( model_coverage.get_image(299)) self._test_quantization_goldens(quantization_type, converter, input_data=[img_array], golden_name="inception_v3_%s" % quantization_type.value)
def test_mobilenet_v1(self, quantization_type): frozengraph_file = model_coverage.get_filepath( "mobilenet/mobilenet_v1_1.0_224_frozen.pb") converter = _lite.TFLiteConverter.from_frozen_graph( frozengraph_file, input_arrays=["input"], output_arrays=["MobilenetV1/Predictions/Reshape_1"], input_shapes={"input": (1, 224, 224, 3)}) img_array = keras.applications.inception_v3.preprocess_input( model_coverage.get_image(224)) self._test_quantization_goldens(quantization_type, converter, input_data=[img_array], golden_name="mobilenet_v1_%s" % quantization_type.value)