def convert_jax_hlo(input_content, is_proto_format, **kwargs): """Converts a Jax hlo-based model using TF Lite converter.""" model_flags = _model_flags_pb2.ModelFlags() model_flags.use_hlo_import = True if is_proto_format: model_flags.hlo_file_type = _model_flags_pb2.ModelFlags.HLO_PROTO else: model_flags.hlo_file_type = _model_flags_pb2.ModelFlags.HLO_TEXT toco_flags = build_toco_flags(**kwargs) data = toco_convert_protos( model_flags.SerializeToString(), toco_flags.SerializeToString(), input_content, None, # debug_info_str, unused enable_mlir_converter=True) return data
def _run(self, sess, in_tensor, out_tensor, should_succeed): """Use toco binary to check conversion from graphdef to tflite. Args: sess: Active TensorFlow session containing graph. in_tensor: TensorFlow tensor to use as input. out_tensor: TensorFlow tensor to use as output. should_succeed: Whether this is a valid conversion. """ # Build all protos and extract graphdef graph_def = sess.graph_def toco_flags = toco_flags_pb2.TocoFlags() toco_flags.input_format = toco_flags_pb2.TENSORFLOW_GRAPHDEF toco_flags.output_format = toco_flags_pb2.TFLITE toco_flags.inference_input_type = types_pb2.FLOAT toco_flags.inference_type = types_pb2.FLOAT toco_flags.allow_custom_ops = True model_flags = model_flags_pb2.ModelFlags() input_array = model_flags.input_arrays.add() input_array.name = TensorName(in_tensor) input_array.shape.dims.extend(map(int, in_tensor.shape)) model_flags.output_arrays.append(TensorName(out_tensor)) # Shell out to run toco (in case it crashes) with tempfile.NamedTemporaryFile() as fp_toco, \ tempfile.NamedTemporaryFile() as fp_model, \ tempfile.NamedTemporaryFile() as fp_input, \ tempfile.NamedTemporaryFile() as fp_output: fp_model.write(model_flags.SerializeToString()) fp_toco.write(toco_flags.SerializeToString()) fp_input.write(graph_def.SerializeToString()) fp_model.flush() fp_toco.flush() fp_input.flush() tflite_bin = resource_loader.get_path_to_datafile( "toco_from_protos.par") cmdline = " ".join([ tflite_bin, fp_model.name, fp_toco.name, fp_input.name, fp_output.name ]) exitcode = os.system(cmdline) if exitcode == 0: stuff = fp_output.read() self.assertEqual(stuff is not None, should_succeed) else: self.assertFalse(should_succeed)
def build_model_flags(change_concat_input_ranges=False, allow_nonexistent_arrays=False, saved_model_dir=None, saved_model_version=0, saved_model_tags=None, saved_model_exported_names=None, **_): """Builds the model flags object from params. Args: change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) allow_nonexistent_arrays: Allow specifying array names that don't exist or are unused in the final graph. (default False) saved_model_dir: Filepath of the saved model to be converted. This value will be non-empty only when the saved model import path will be used. Otherwises, the graph def-based conversion will be processed. saved_model_version: SavedModel file format version of The saved model file to be converted. This value will be set only when the SavedModel import path will be used. saved_model_tags: Set of string saved model tags, formatted in the comma-separated value. This value will be set only when the SavedModel import path will be used. saved_model_exported_names: Names to be exported (default: export all) when the saved model import path is on. This value will be set only when the SavedModel import path will be used. Returns: model_flags: protocol buffer describing the model. """ model_flags = _model_flags_pb2.ModelFlags() model_flags.change_concat_input_ranges = change_concat_input_ranges model_flags.allow_nonexistent_arrays = allow_nonexistent_arrays if saved_model_dir: model_flags.saved_model_dir = saved_model_dir model_flags.saved_model_version = saved_model_version if saved_model_tags: model_flags.saved_model_tags.extend(saved_model_tags) if saved_model_exported_names: model_flags.saved_model_exported_names.extend( saved_model_exported_names) return model_flags
def convert_jax_hlo(input_content, input_names, is_proto_format, **kwargs): """Converts a Jax hlo-based model using TFLite converter.""" model_flags = _model_flags_pb2.ModelFlags() model_flags.use_hlo_import = True if is_proto_format: model_flags.hlo_file_type = _model_flags_pb2.ModelFlags.HLO_PROTO else: model_flags.hlo_file_type = _model_flags_pb2.ModelFlags.HLO_TEXT # Build input names. for input_name in input_names: input_array = model_flags.input_arrays.add() input_array.name = input_name conversion_flags = build_conversion_flags(**kwargs) data = convert(model_flags.SerializeToString(), conversion_flags.SerializeToString(), input_data_str=input_content, debug_info_str=None, enable_mlir_converter=True) return data
def convert_saved_model(saved_model_dir=None, saved_model_version=0, saved_model_tags=None, saved_model_exported_names=None, **kwargs): """Converts a saved_model using TF Lite converter.""" model_flags = _model_flags_pb2.ModelFlags() if saved_model_dir: model_flags.saved_model_dir = saved_model_dir model_flags.saved_model_version = saved_model_version if saved_model_tags: model_flags.saved_model_tags.extend(saved_model_tags) if saved_model_exported_names: model_flags.saved_model_exported_names.extend(saved_model_exported_names) toco_flags = build_toco_flags(**kwargs) data = toco_convert_protos( model_flags.SerializeToString(), toco_flags.SerializeToString(), None, # input_data, unused None, # debug_info_str, unused enable_mlir_converter=True) return data
def build_toco_convert_protos(input_tensors, output_tensors, inference_type=dtypes.float32, inference_input_type=None, input_format=lite_constants.TENSORFLOW_GRAPHDEF, input_shapes=None, output_format=lite_constants.TFLITE, quantized_input_stats=None, default_ranges_stats=None, drop_control_dependency=True, reorder_across_fake_quant=False, allow_custom_ops=False, change_concat_input_ranges=False, post_training_quantize=False, quantize_to_float16=False, dump_graphviz_dir=None, dump_graphviz_video=False, target_ops=None, allow_nonexistent_arrays=False, debug_info=None, conversion_summary_dir=None, saved_model_dir=None, saved_model_version=0, saved_model_tags=None, saved_model_exported_names=None, select_user_tf_ops=None): """Builds protocol buffers describing a conversion of a model using TOCO. Typically this is to convert from TensorFlow GraphDef to TFLite, in which case the default `input_format` and `output_format` are sufficient. Args: input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). inference_type: Data type of numeric arrays, excluding the input layer. (default tf.float32, must be in {tf.float32, tf.int8, tf.uint8}) inference_input_type: Data type of the numeric arrays in the input layer. If `inference_input_type` is in {tf.int8, tf.uint8}, then `quantized_input_stats` must be provided. (default is the value assigned to `inference_type`, must be in {tf.float32, tf.int8, tf.uint8}) input_format: Type of data to read. (default TENSORFLOW_GRAPHDEF, must be in {TENSORFLOW_GRAPHDEF}) input_shapes: Input array shape. (default None, must be None or a list of the same length as `input_tensors`.) output_format: Output file format. (default TFLITE, must be in {TFLITE, GRAPHVIZ_DOT}) quantized_input_stats: Map of input tensor names to a tuple of floats representing the mean and standard deviation of the training data. (e.g., {"foo" : (0., 1.)}). Required if `inference_input_type` is tf.int8 or tf.uint8. (default None) default_ranges_stats: Tuple of integers representing (min, max) range values for all arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) post_training_quantize: Boolean indicating whether to quantize the weights of the converted float model. Model size will be reduced and there will be latency improvements (at the cost of accuracy). (default False) quantize_to_float16: Boolean indicating whether to convert float buffers to float16. (default False) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over --output_format=GRAPHVIZ_DOT in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the graph after every graph transformation. (default False) target_ops: Experimental flag, subject to change. Set of OpsSet options indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS])) allow_nonexistent_arrays: Allow specifying array names that don't exist or are unused in the final graph. (default False) debug_info: `GraphDebugInfo` proto containing the stack traces for the original nodes referred by the converted graph. conversion_summary_dir: A string, the path to the generated conversion logs. saved_model_dir: Filepath of the saved model to be converted. This value will be non-empty only when the saved model import path will be used. Otherwises, the graph def-based conversion will be processed. saved_model_version: SavedModel file format version of The saved model file to be converted. This value will be set only when the SavedModel import path will be used. saved_model_tags: Set of string saved model tags, formatted in the comma-separated value. This value will be set only when the SavedModel import path will be used. saved_model_exported_names: Names to be exported (default: export all) when the saved model import path is on. This value will be set only when the SavedModel import path will be used. select_user_tf_ops: List of user's defined TensorFlow ops need to be supported in the TensorFlow Lite runtime. These ops will be supported as select TensorFlow ops. Returns: model_flags, toco_flags, debug_info: three protocol buffers describing the conversion process and debug information. Raises: ValueError: If the input tensor type is unknown Missing mean_values or std_dev_values RuntimeError: If TOCO fails to convert (in which case the runtime error's error text will contain the TOCO error log) """ toco = build_toco_flags(inference_type, inference_input_type, input_format, output_format, default_ranges_stats, drop_control_dependency, reorder_across_fake_quant, allow_custom_ops, post_training_quantize, quantize_to_float16, dump_graphviz_dir, dump_graphviz_video, target_ops, conversion_summary_dir, select_user_tf_ops) model = _model_flags_pb2.ModelFlags() model.change_concat_input_ranges = change_concat_input_ranges for idx, input_tensor in enumerate(input_tensors): input_array = model.input_arrays.add() if saved_model_dir: input_array.name = input_tensor.name else: input_array.name = util.get_tensor_name(input_tensor) input_array.data_type = convert_tensor_tf_type_to_tflite_type( input_tensor.dtype, usage="input type of the TensorFlow model") if _requires_input_stats(toco) and quantized_input_stats: input_array.mean_value, input_array.std_value = quantized_input_stats[ idx] if input_shapes is None: shape = input_tensor.shape else: shape = input_shapes[idx] if shape.rank is not None: # Create shapes with -1 for unknown dimensions. dims = [] for dim in shape: if (dim is None or (isinstance(dim, tensor_shape.Dimension) and dim.value is None)): dims.append(-1) else: dims.append(int(dim)) input_array.shape.dims.extend(dims) input_array.shape.unknown_rank = False else: input_array.shape.unknown_rank = True for output_tensor in output_tensors: if saved_model_dir: model.output_arrays.append(output_tensor.name) else: model.output_arrays.append(util.get_tensor_name(output_tensor)) model.allow_nonexistent_arrays = allow_nonexistent_arrays if saved_model_dir: model.saved_model_dir = saved_model_dir model.saved_model_version = saved_model_version if saved_model_tags: model.saved_model_tags.extend(saved_model_tags) if saved_model_exported_names: model.saved_model_exported_names.extend(saved_model_exported_names) return model, toco, debug_info
def build_toco_convert_protos(input_tensors, output_tensors, inference_type=lite_constants.FLOAT, inference_input_type=None, input_format=lite_constants.TENSORFLOW_GRAPHDEF, input_shapes=None, output_format=lite_constants.TFLITE, quantized_input_stats=None, default_ranges_stats=None, drop_control_dependency=True, reorder_across_fake_quant=False, allow_custom_ops=False, custom_opdefs=None, change_concat_input_ranges=False, post_training_quantize=False, quantize_to_float16=False, dump_graphviz_dir=None, dump_graphviz_video=False, target_ops=None, allow_nonexistent_arrays=False, debug_info=None, conversion_summary_dir=None, saved_model_dir=None, saved_model_version=0, saved_model_tags=None, saved_model_exported_names=None): """Builds protocol buffers describing a conversion of a model using TOCO. Typically this is to convert from TensorFlow GraphDef to TFLite, in which case the default `input_format` and `output_format` are sufficient. Args: input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). inference_type: Target data type of real-number arrays in the output file. Must be `{tf.float32, tf.uint8, tf.int8}`. (default tf.float32) inference_input_type: Target data type of real-number input arrays. Allows for a different type for input arrays in the case of quantization. Must be `{tf.float32, tf.uint8, tf.int8}`. (default `inference_type`) input_format: Type of data to read Currently must be `{TENSORFLOW_GRAPHDEF}`. (default TENSORFLOW_GRAPHDEF) input_shapes: Input array shape. It needs to be a list of the same length as `input_tensors`, or None. (default None) output_format: Output file format. Currently must be `{TFLITE, GRAPHVIZ_DOT}`. (default TFLITE) quantized_input_stats: List of tuples of floats representing the mean and standard deviation. Each tuple maps to the corresponding input tensor. Only need if `inference_input_type` is `QUANTIZED_UINT8` or `INT8`. real_input_value = (quantized_input_value - mean_value) / std_dev_value. (default None) default_ranges_stats: Tuple of integers representing (min, max) range values for all arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) custom_opdefs: List of strings representing custom ops OpDefs that are included in the GraphDef. Required when using custom operations with the MLIR-based converter. (default None) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) post_training_quantize: Boolean indicating whether to quantize the weights of the converted float model. Model size will be reduced and there will be latency improvements (at the cost of accuracy). (default False) quantize_to_float16: Boolean indicating whether to convert float buffers to float16. (default False) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over --output_format=GRAPHVIZ_DOT in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the graph after every graph transformation. (default False) target_ops: Experimental flag, subject to change. Set of OpsSet options indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS])) allow_nonexistent_arrays: Allow specifying array names that don't exist or are unused in the final graph. (default False) debug_info: `GraphDebugInfo` proto containing the stack traces for the original nodes referred by the converted graph. conversion_summary_dir: A string, the path to the generated conversion logs. saved_model_dir: Filepath of the saved model to be converted. This value will be non-empty only when the saved model import path will be used. Otherwises, the graph def-based conversion will be processed. saved_model_version: SavedModel file format version of The saved model file to be converted. This value will be set only when the SavedModel import path will be used. saved_model_tags: Set of string saved model tags, formatted in the comma-separated value. This value will be set only when the SavedModel import path will be used. saved_model_exported_names: Names to be exported (default: export all) when the saved model import path is on. This value will be set only when the SavedModel import path will be used. Returns: model_flags, toco_flags, debug_info: three protocol buffers describing the conversion process and debug information. Raises: ValueError: If the input tensor type is unknown Missing mean_values or std_dev_values RuntimeError: If TOCO fails to convert (in which case the runtime error's error text will contain the TOCO error log) """ toco = _toco_flags_pb2.TocoFlags() toco.input_format = input_format toco.output_format = output_format toco.inference_type = util.convert_dtype_to_tflite_type(inference_type) if inference_input_type: toco.inference_input_type = util.convert_dtype_to_tflite_type( inference_input_type) else: toco.inference_input_type = toco.inference_type toco.drop_control_dependency = drop_control_dependency toco.reorder_across_fake_quant = reorder_across_fake_quant toco.allow_custom_ops = allow_custom_ops if custom_opdefs: toco.custom_opdefs.extend(custom_opdefs) toco.post_training_quantize = post_training_quantize toco.quantize_to_float16 = quantize_to_float16 if default_ranges_stats: toco.default_ranges_min = default_ranges_stats[0] toco.default_ranges_max = default_ranges_stats[1] if dump_graphviz_dir: toco.dump_graphviz_dir = dump_graphviz_dir toco.dump_graphviz_include_video = dump_graphviz_video if conversion_summary_dir: toco.conversion_summary_dir = conversion_summary_dir if target_ops: if set(target_ops) == set( [OpsSet.TFLITE_BUILTINS, OpsSet.SELECT_TF_OPS]): toco.enable_select_tf_ops = True elif set(target_ops) == set([OpsSet.SELECT_TF_OPS]): toco.enable_select_tf_ops = True toco.force_select_tf_ops = True model = _model_flags_pb2.ModelFlags() model.change_concat_input_ranges = change_concat_input_ranges for idx, input_tensor in enumerate(input_tensors): input_array = model.input_arrays.add() input_array.name = util.get_tensor_name(input_tensor) input_array.data_type = util.convert_dtype_to_tflite_type( input_tensor.dtype) if _requires_input_stats(toco) and quantized_input_stats: input_array.mean_value, input_array.std_value = quantized_input_stats[ idx] if input_shapes is None: shape = input_tensor.shape else: shape = input_shapes[idx] # Create shapes with -1 for unknown dimensions. dims = [] for dim in shape: if (dim is None or (isinstance(dim, tensor_shape.Dimension) and dim.value is None)): dims.append(-1) else: dims.append(int(dim)) input_array.shape.dims.extend(dims) for output_tensor in output_tensors: model.output_arrays.append(util.get_tensor_name(output_tensor)) model.allow_nonexistent_arrays = allow_nonexistent_arrays if saved_model_dir: model.saved_model_dir = saved_model_dir model.saved_model_version = saved_model_version if saved_model_tags: model.saved_model_tags.extend(saved_model_tags) if saved_model_exported_names: model.saved_model_exported_names.extend(saved_model_exported_names) return model, toco, debug_info
def build_toco_convert_protos(input_tensors, output_tensors, inference_type=lite_constants.FLOAT, inference_input_type=None, input_format=lite_constants.TENSORFLOW_GRAPHDEF, input_shapes=None, output_format=lite_constants.TFLITE, quantized_input_stats=None, default_ranges_stats=None, drop_control_dependency=True, reorder_across_fake_quant=False, allow_custom_ops=False, change_concat_input_ranges=False, post_training_quantize=False, dump_graphviz_dir=None, dump_graphviz_video=False, target_ops=None, allow_nonexistent_arrays=False): """Builds protocol buffers describing a conversion of a model using TOCO. Typically this is to convert from TensorFlow GraphDef to TFLite, in which case the default `input_format` and `output_format` are sufficient. Args: input_tensors: List of input tensors. Type and shape are computed using `foo.get_shape()` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). inference_type: Target data type of real-number arrays in the output file. Must be `{FLOAT, QUANTIZED_UINT8}`. (default FLOAT) inference_input_type: Target data type of real-number input arrays. Allows for a different type for input arrays in the case of quantization. Must be `{FLOAT, QUANTIZED_UINT8}`. (default `inference_type`) input_format: Type of data to read Currently must be `{TENSORFLOW_GRAPHDEF}`. (default TENSORFLOW_GRAPHDEF) input_shapes: Input array shape. It needs to be a list of the same length as `input_tensors`, or None. (default None) output_format: Output file format. Currently must be `{TFLITE, GRAPHVIZ_DOT}`. (default TFLITE) quantized_input_stats: List of tuples of floats representing the mean and standard deviation. Each tuple maps to the corresponding input tensor. Only need if `inference_input_type` is `QUANTIZED_UINT8`. real_input_value = (quantized_input_value - mean_value) / std_dev_value. (default None) default_ranges_stats: Tuple of integers representing (min, max) range values for all arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) allow_custom_ops: Boolean indicating whether to allow custom operations. When false any unknown operation is an error. When true, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) post_training_quantize: Boolean indicating whether to quantize the weights of the converted float model. Model size will be reduced and there will be latency improvements (at the cost of accuracy). (default False) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over --output_format=GRAPHVIZ_DOT in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the graph after every graph transformation. (default False) target_ops: Experimental flag, subject to change. Set of OpsSet options indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS])) allow_nonexistent_arrays: Allow specifying array names that don't exist or are unused in the final graph. (default False) Returns: model_flags, toco_flags: two protocol buffers describing the conversion process. Raises: ValueError: If the input tensor type is unknown RuntimeError: If TOCO fails to convert (in which case the runtime error's error text will contain the TOCO error log) """ toco = _toco_flags_pb2.TocoFlags() toco.input_format = input_format toco.output_format = output_format toco.inference_type = inference_type if inference_input_type: toco.inference_input_type = inference_input_type else: toco.inference_input_type = toco.inference_type toco.drop_control_dependency = drop_control_dependency toco.reorder_across_fake_quant = reorder_across_fake_quant toco.allow_custom_ops = allow_custom_ops toco.post_training_quantize = post_training_quantize if default_ranges_stats: toco.default_ranges_min = default_ranges_stats[0] toco.default_ranges_max = default_ranges_stats[1] if dump_graphviz_dir: toco.dump_graphviz_dir = dump_graphviz_dir toco.dump_graphviz_include_video = dump_graphviz_video if target_ops: if set(target_ops) == set([OpsSet.TFLITE_BUILTINS, OpsSet.SELECT_TF_OPS]): toco.allow_flex_ops = True elif set(target_ops) == set([OpsSet.SELECT_TF_OPS]): toco.allow_flex_ops = True toco.force_flex_ops = True model = _model_flags_pb2.ModelFlags() model.change_concat_input_ranges = change_concat_input_ranges for idx, input_tensor in enumerate(input_tensors): input_array = model.input_arrays.add() if toco.inference_input_type == lite_constants.QUANTIZED_UINT8: input_array.mean_value, input_array.std_value = quantized_input_stats[idx] input_array.name = tensor_name(input_tensor) if input_shapes is None: shape = input_tensor.get_shape() else: shape = input_shapes[idx] input_array.shape.dims.extend(map(int, shape)) for output_tensor in output_tensors: model.output_arrays.append(tensor_name(output_tensor)) model.allow_nonexistent_arrays = allow_nonexistent_arrays return model, toco