コード例 #1
0
ファイル: first_server.py プロジェクト: neuroph12/python
def image_recognition(cv_image):

    #cv2.imshow('image',cv_image)
    #		cv2.waitKey(1000)

    image_data = cv2.imencode('.jpg', cv_image)[1].tostring()
    # Creates graph from saved GraphDef.
    softmax_tensor = session.graph.get_tensor_by_name('softmax:0')
    predictions = session.run(softmax_tensor,
                              {'DecodeJpeg/contents:0': image_data})
    predictions = np.squeeze(predictions)
    # Creates node ID --> English string lookup.
    node_lookup = classify_image.NodeLookup()
    top_k = predictions.argsort()[use_top_k:][::-1]
    strings = []
    scores = []
    result_num = 0
    for node_id in top_k:
        human_string = node_lookup.id_to_string(node_id)
        score = predictions[node_id]
        if score > score_threshold:
            strings.append(human_string)
            scores.append(float(score))
            result_num += 1

    return strings, scores, result_num
コード例 #2
0
ファイル: image_recognition_v2.py プロジェクト: UKMFKABRR/ROS
 def callback(self, image_msg):
     cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8")
     # copy from
     # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/imagenet/classify_image.py
     image_data = cv2.imencode('.jpg', cv_image)[1].tostring()
     # Creates graph from saved GraphDef.
     softmax_tensor = self._session.graph.get_tensor_by_name('softmax:0')
     # Creates node ID --> English string lookup.
     node_lookup = classify_image.NodeLookup()
     top_k = predictions.argsort(
     )[-self.use_top_number_of_predictions:][::-1]
     for node_id in top_k:
         human_string = node_lookup.id_to_string(node_id)
         score = predictions[node_id]
         if score > self.score_threshold:
             rospy.loginfo('%s (score = %.5f)' % (human_string, score))
             self._pub.publish(human_string)
コード例 #3
0
 def callback(self, image_msg):
     # convert image from ROS image msg type to opencv format
     cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8")
     image_data = cv2.imencode('.jpg', cv_image)[1].tostring()
     softmax_tensor = self._session.graph.get_tensor_by_name('softmax:0')
     predictions = self._session.run(
         softmax_tensor, {'DecodeJpeg/contents:0':image_data}
     )
     predictions = np.squeeze(predictions)
     # create nodeID -- english string lookup
     node_lookup = classify_image.NodeLookup()
     top_k = predictions.argsort()[-self.use_top_k:][::-1]  # get top k
     for node_id in top_k:
         human_string = node_lookup.id_to_string(node_id)
         score = predictions[node_id]
         if score > self.score_threshold:
             rospy.loginfo('%s (score = %.5f)' %(human_string, score))
             self._pub.publish(human_string)
コード例 #4
0
def run_top_k_predictions_on_image(image):

  if not tf.gfile.Exists(image):
    tf.logging.fatal('File does not exist %s', image)
  image_data = tf.gfile.FastGFile(image, 'rb').read()

  # Download the incepion-v3 model
  ic.maybe_download_and_extract()

  # Creates graph from saved GraphDef.
  ic.create_graph()

  with tf.Session() as sess:
    # Convert the PNG image to a height x width x 3 (channels) Numpy array, 
    # for example using PIL, then feed the 'DecodeJpeg:0' tensor:
    image_content = Image.open(image)
    image_array = np.array(image_content)[:, :, 0:3]  # Select RGB channels only.

    # Some useful tensors:
    # 'softmax:0': A tensor containing the normalized prediction across
    #   1000 labels.
    # 'pool_3:0': A tensor containing the next-to-last layer containing 2048
    #   float description of the image.
    # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
    #   encoding of the image.
    # Runs the softmax tensor by feeding the image_data as input to the graph.
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    predictions = sess.run(softmax_tensor, {'DecodeJpeg:0': image_array})
    predictions = np.squeeze(predictions)

    # Creates node ID --> English string lookup.
    node_lookup = ic.NodeLookup()
    top_k = predictions.argsort()[-ic.FLAGS.num_top_predictions:][::-1]
    for node_id in top_k:
      human_string = node_lookup.id_to_string(node_id)
      score = predictions[node_id]
      print('%s (score = %.5f)' % (human_string, score))
コード例 #5
0
    def _classify_cb(self, image):
        try:
            cv_img = self._BRIDGE.imgmsg_to_cv2(image)
        except CvBridgeError as e:
            rospy.logerr("cv_bridge exception: {}".format(e))

        img_data = cv2.imencode('.jpg', cv_img)[1].tostring()
        softmax = self._sess.graph.get_tensor_by_name('softmax:0')
        pred = self._sess.run(softmax, {'DecodeJpeg/contents:0': img_data})

        pred = np.squeeze(pred)

        lookup = classify_image.NodeLookup()
        top_k = pred.argsort()[-self._k:][::-1]

        ss = []
        for id in top_k:
            ret_str = lookup.id_to_string(id)
            score = pred[id]
            if score > self._score_threshold:
                ss.append("[{:0.4f} - {}]\n".format(score, ret_str))

        self._string_pub.publish(','.join(ss))
        self._show_image(cv_img, ss[0][:-1])