コード例 #1
0
    def benchmarkMapFanOut(self):
        fan_outs = [1, 2, 5, 10, 20, 50, 100]
        for fan_out in fan_outs:
            for mode in ["general", "single-threaded", "short-circuit"]:
                if mode == "general":
                    map_fn = lambda *xs: [x + 1 for x in xs]
                    use_inter_op_parallelism = True
                    benchmark_label = ""
                if mode == "single-threaded":
                    map_fn = lambda *xs: [x + 1 for x in xs]
                    use_inter_op_parallelism = False
                    benchmark_label = "_single_threaded"
                if mode == "short-circuit":
                    map_fn = lambda *xs: xs
                    use_inter_op_parallelism = True  # should not have any significance
                    benchmark_label = "_short_circuit"

                with ops.Graph().as_default():
                    dataset = dataset_ops.Dataset.from_tensors(
                        tuple(0 for _ in range(fan_out))).repeat(None)
                    dataset = dataset_ops.MapDataset(
                        dataset,
                        map_fn,
                        use_inter_op_parallelism=use_inter_op_parallelism)
                    options = dataset_ops.Options()
                    options.experimental_optimization.apply_default_optimizations = False
                    dataset = dataset.with_options(options)
                    iterator = dataset_ops.make_one_shot_iterator(dataset)
                    next_element = iterator.get_next()

                    with session.Session() as sess:
                        for _ in range(5):
                            sess.run(next_element[0].op)
                        deltas = []
                        for _ in range(100):
                            start = time.time()
                            for _ in range(100):
                                sess.run(next_element[0].op)
                            end = time.time()
                            deltas.append(end - start)

                        median_wall_time = np.median(deltas) / 100
                        self.report_benchmark(iters=1000,
                                              wall_time=median_wall_time,
                                              name="fan_out_%d%s" %
                                              (fan_out, benchmark_label))
コード例 #2
0
    def testOptimizationNestedDatasetWithModifiedRetval(self):
        def flat_map_fn(_):
            dataset = dataset_ops.Dataset.from_tensors(0)
            dataset = dataset.apply(testing.assert_next(["MapAndBatch"]))
            # Should be fused by map and batch fusion
            dataset = dataset.map(lambda x: x)
            dataset = dataset.batch(1)
            return dataset

        dataset = dataset_ops.Dataset.range(1)
        dataset = dataset.flat_map(flat_map_fn)

        options = dataset_ops.Options()
        options.experimental_optimization.apply_default_optimizations = False
        options.experimental_optimization.map_and_batch_fusion = True
        dataset = dataset.with_options(options)
        self.assertDatasetProduces(dataset, expected_output=[[0]])
コード例 #3
0
    def benchmarkChainOfMaps(self):
        chain_lengths = [0, 1, 2, 5, 10, 20, 50]
        for chain_length in chain_lengths:
            for mode in ["general", "single-threaded", "short-circuit"]:
                if mode == "general":
                    map_fn = lambda x: x + 1
                    use_inter_op_parallelism = True
                    benchmark_label = ""
                if mode == "single-threaded":
                    map_fn = lambda x: x + 1
                    use_inter_op_parallelism = False
                    benchmark_label = "_single_threaded"
                if mode == "short-circuit":
                    map_fn = lambda x: x
                    use_inter_op_parallelism = True  # should not have any significance
                    benchmark_label = "_short_circuit"

                with ops.Graph().as_default():
                    dataset = dataset_ops.Dataset.from_tensors(0).repeat(None)
                    for _ in range(chain_length):
                        dataset = dataset_ops.MapDataset(
                            dataset,
                            map_fn,
                            use_inter_op_parallelism=use_inter_op_parallelism)
                    options = dataset_ops.Options()
                    options.experimental_optimization.apply_default_optimizations = False
                    dataset = dataset.with_options(options)
                    iterator = dataset_ops.make_one_shot_iterator(dataset)
                    next_element = iterator.get_next()

                    with session.Session() as sess:
                        for _ in range(5):
                            sess.run(next_element.op)
                        deltas = []
                        for _ in range(100):
                            start = time.time()
                            for _ in range(100):
                                sess.run(next_element.op)
                            end = time.time()
                            deltas.append(end - start)

                        median_wall_time = np.median(deltas) / 100
                        self.report_benchmark(iters=1000,
                                              wall_time=median_wall_time,
                                              name="chain_length_%d%s" %
                                              (chain_length, benchmark_label))
コード例 #4
0
  def testOptimizationWithCapturedRefVar(self, dataset_fn):
    """Tests that default optimizations are disabled with ref variables."""
    variable = variable_scope.get_variable(
        "v", initializer=0, use_resource=False)
    assign_op = variable.assign_add(1)

    # Check that warning is logged.
    warnings.simplefilter("always")
    with warnings.catch_warnings(record=True) as w:
      unoptimized_dataset = dataset_fn(variable)

      options = dataset_ops.Options()
      options.experimental_optimization.apply_default_optimizations = False
      options.experimental_optimization.noop_elimination = True
      options.experimental_optimization.map_and_batch_fusion = True
      optimized_dataset = unoptimized_dataset.with_options(options)
      optimized_it = dataset_ops.make_initializable_iterator(optimized_dataset)

    self.assertGreaterEqual(len(w), 1)
    graph_rewrites = options._graph_rewrites()
    expected = (
        "tf.data graph rewrites are not compatible with "
        "tf.Variable. The following rewrites will be disabled: %s."
        " To enable rewrites, use resource variables instead by "
        "calling `tf.enable_resource_variables()` at the start of the "
        "program." %
        (", ".join(graph_rewrites.enabled + graph_rewrites.default)))
    self.assertTrue(any(expected in str(warning) for warning in w))

    # Check that outputs are the same in the optimized and unoptimized cases,
    # when the variable value is changing.
    unoptimized_it = dataset_ops.make_initializable_iterator(
        unoptimized_dataset)
    with ops.control_dependencies([assign_op]):
      unoptimized_output = unoptimized_it.get_next()
      optimized_output = optimized_it.get_next()

    self.evaluate(variable.initializer)
    self.evaluate((unoptimized_it.initializer, optimized_it.initializer))
    while True:
      try:
        unoptimized, optimized = self.evaluate((unoptimized_output,
                                                optimized_output))
        self.assertEqual(unoptimized, optimized)
      except errors.OutOfRangeError:
        break
コード例 #5
0
 def testSimpleReorderingV1(self):
     dataset = dataset_ops.Dataset.range(100)
     # Map ops have preserve_cardinality=false in tensorflow v1.
     dataset = dataset.apply(
         testing.assert_next([
             "ParallelMap", "FiniteSkip", "FiniteTake", "Shard", "Prefetch"
         ]))
     dataset = dataset.map(lambda x: x + 1, num_parallel_calls=10)
     dataset = dataset.skip(10)
     dataset = dataset.prefetch(1)
     dataset = dataset.take(50)
     dataset = dataset.shard(2, 0)
     options = dataset_ops.Options()
     options.experimental_optimization.apply_default_optimizations = False
     options.experimental_optimization.reorder_data_discarding_ops = True
     dataset = dataset.with_options(options)
     self.assertDatasetProduces(dataset, range(11, 61, 2))
コード例 #6
0
    def testCapturedInputs(self):
        a = constant_op.constant(1, dtype=dtypes.float32)
        b = constant_op.constant(0, dtype=dtypes.float32)
        some_tensor = math_ops.mul(a, b)

        def random_with_capture(_):
            return some_tensor + random_ops.random_uniform(
                [], minval=1, maxval=10, dtype=dtypes.float32, seed=42)

        dataset = dataset_ops.Dataset.range(5).apply(
            optimization.assert_next(["Zip[0]",
                                      "Map"])).map(random_with_capture)
        options = dataset_ops.Options()
        options.experimental_optimization = OptimizationOptions()
        options.experimental_optimization.hoist_random_uniform = True
        dataset = dataset.with_options(options)
        self._testDataset(dataset)
コード例 #7
0
ファイル: map_benchmark.py プロジェクト: zihan987/tensorflow
 def benchmark_stats(self):
     for stats in [True, False]:
         dataset = dataset_ops.Dataset.range(1000).repeat()
         dataset = dataset.map(lambda x: x + 1, num_parallel_calls=32)
         options = dataset_ops.Options()
         options.experimental_deterministic = False
         if stats:
             aggregator = stats_aggregator.StatsAggregator()
             options.experimental_stats.aggregator = aggregator
         dataset = dataset.with_options(options)
         self.run_and_report_benchmark(dataset,
                                       num_elements=10000,
                                       extras={
                                           "model_name": "map.benchmark.7",
                                           "parameters": "%s" % stats,
                                       },
                                       name="stats_%s" % stats)
コード例 #8
0
 def _build_shuffle_dataset(
     self,
     range_limit=10,
     num_repeats=5,
     buffer_size=5,
     seed=None,
     reshuffle_each_iteration=None,
 ):
     dataset = dataset_ops.Dataset.range(range_limit).shuffle(
         buffer_size,
         seed=seed,
         reshuffle_each_iteration=reshuffle_each_iteration).repeat(
             num_repeats)
     # TODO(b/138399725): Re-enable default optimizations.
     options = dataset_ops.Options()
     options.experimental_optimization.apply_default_optimizations = False
     return dataset.with_options(options)
コード例 #9
0
    def testMapAndBatchTypes(self, element, dtype, numa_aware):
        def gen():
            yield element

        dataset = dataset_ops.Dataset.from_generator(
            gen, dtype).repeat(100).apply(
                batching.map_and_batch(lambda x: x, batch_size=10))

        if numa_aware:
            options = dataset_ops.Options()
            options.experimental_numa_aware = True
            dataset = dataset.with_options(options)

        get_next = self.getNext(dataset)
        for _ in range(10):
            self.assertAllEqual([element for _ in range(10)],
                                self.evaluate(get_next()))
コード例 #10
0
    def dataset_fn(delay_ms):

      def interleave_fn(x):
        ds = dataset_ops.Dataset.from_tensors(x)
        if math_ops.equal(x, 0):
          ds = ds.apply(testing.sleep(delay_ms * 1000))
        else:
          ds = ds.apply(testing.sleep(0))
        return ds

      ds = dataset_ops.Dataset.from_tensor_slices(elements)
      ds = ds.interleave(interleave_fn, cycle_length=10, num_parallel_calls=10)
      opts = dataset_ops.Options()
      opts.experimental_deterministic = False
      ds = ds.with_options(opts)
      ds = self.make_distributed_dataset(ds, cluster)
      return ds
コード例 #11
0
ファイル: input_lib.py プロジェクト: zzg-china/tensorflow
def _create_iterators_per_worker_with_input_context(input_contexts,
                                                    input_workers,
                                                    dataset_fn):
  """Create a multidevice iterator per workers given a dataset function."""
  iterators = []
  for i, ctx in enumerate(input_contexts):
    worker = input_workers.worker_devices[i]
    with ops.device(worker):
      dataset = dataset_fn(ctx)
      # TODO(b/138745411): Remove once stateful transformations are supported.
      options = dataset_ops.Options()
      options.experimental_distribute._make_stateless = True  # pylint: disable=protected-access
      dataset = dataset.with_options(options)
      devices = input_workers.compute_devices_for_worker(i)
      iterator = _SingleWorkerDatasetIterator(dataset, worker, devices)
      iterators.append(iterator)
  return iterators
コード例 #12
0
  def testOptimizationDisabled(self):
    """Tests the optimization settings by disabling all."""
    options = dataset_ops.Options()
    options.experimental_optimization.filter_fusion = False
    options.experimental_optimization.filter_with_random_uniform_fusion = False
    options.experimental_optimization.hoist_random_uniform = False
    options.experimental_optimization.map_and_batch_fusion = False
    options.experimental_optimization.map_and_filter_fusion = False
    options.experimental_optimization.map_parallelization = False
    options.experimental_optimization.map_fusion = False
    options.experimental_optimization.noop_elimination = False
    options.experimental_optimization.parallel_batch = False
    options.experimental_optimization.shuffle_and_repeat_fusion = False
    options.experimental_optimization.map_vectorization.enabled = False
    options.experimental_optimization.autotune = False
    options.experimental_deterministic = True
    options.experimental_stats.latency_all_edges = False
    options.experimental_slack = False

    expected_optimizations_enabled = []
    expected_optimizations_disabled = [
        "filter_fusion",
        "filter_with_random_uniform_fusion",
        "hoist_random_uniform",
        "map_and_batch_fusion",
        "map_and_filter_fusion",
        "map_parallelization",
        "map_fusion",
        "noop_elimination",
        "parallel_batch",
        "shuffle_and_repeat_fusion",
        "map_vectorization",
        "autotune_buffer_sizes",
        "make_sloppy",
        "latency_all_edges",
        "slack",
        "disable_prefetch_legacy_autotune",
    ]
    expected_optimizations_default = []
    graph_rewrites = options._graph_rewrites()
    self.assertEqual(set(graph_rewrites.enabled),
                     set(expected_optimizations_enabled))
    self.assertEqual(set(graph_rewrites.disabled),
                     set(expected_optimizations_disabled))
    self.assertEqual(set(graph_rewrites.default),
                     set(expected_optimizations_default))
コード例 #13
0
 def _create_device_dataset(self, i):
   """Uses _prototype_device_datasets[i] to build a dataset for the device."""
   ds = self._prototype_device_datasets[i]
   ds = _ReincarnatedPerDeviceGenerator(ds, self._incarnation_id)
   if self._prefetch_buffer_size > 0:
     if self._experimental_slack:
       ds = dataset_ops.PrefetchDataset(
           ds, self._prefetch_buffer_size, slack_period=1)
     else:
       ds = ds.prefetch(self._prefetch_buffer_size)
   # TODO(jsimsa): Enable auto-tuning and optimizations when supported for
   # non-CPU devices.
   options = dataset_ops.Options()
   options.experimental_optimization.apply_default_optimizations = False
   options.experimental_optimization.autotune = False
   ds = ds.with_options(options)
   return ds
コード例 #14
0
  def testMapParallelizationWithCapturedVariable(self):
    """Tests that functions with captured variables are not parallelized."""

    captured_t = variables.Variable(42, dtype=dtypes.int64)
    def fn(x):
      return x + captured_t
    dataset = dataset_ops.Dataset.range(5).apply(
        optimization.assert_next(["Map"])).map(fn)
    options = dataset_ops.Options()
    options.experimental_optimization.apply_default_optimizations = False
    options.experimental_optimization.map_parallelization = True
    dataset = dataset.with_options(options)
    self.evaluate(variables.global_variables_initializer())
    self.assertDatasetProduces(
        dataset,
        expected_output=[x + 42 for x in range(5)],
        requires_initialization=True)
コード例 #15
0
    def _apply_fn(dataset):  # pylint: disable=missing-docstring
        external_state_policy = dataset.options(
        ).experimental_external_state_policy
        if external_state_policy is None:
            external_state_policy = ExternalStatePolicy.WARN

        uncompressed_spec = dataset.element_spec
        # Compress the dataset elements to reduce the amount of data that needs to
        # be sent over the network.
        # TODO(b/157105111): Make this an autotuned parallel map when we have a way
        # to limit memory usage.
        dataset = dataset.map(lambda *x: compression_ops.compress(x))
        # Prefetch one compressed element to reduce latency when requesting data
        # from tf.data workers.
        # TODO(b/157105111): Set this to autotune when we have a way to limit
        # memory usage
        dataset = dataset.prefetch(1)
        # Apply options so that the dataset executed in the tf.data service will
        # be optimized and support autotuning.
        dataset = dataset._apply_options()  # pylint: disable=protected-access
        dataset_id = gen_experimental_dataset_ops.register_dataset(
            dataset._variant_tensor,  # pylint: disable=protected-access
            address=address,
            protocol=protocol,
            external_state_policy=external_state_policy.value)
        dataset = _DataServiceDataset(
            input_dataset=dataset,
            dataset_id=dataset_id,
            processing_mode=processing_mode,
            address=address,
            protocol=protocol,
            job_name=job_name,
            max_outstanding_requests=max_outstanding_requests,
            task_refresh_interval_hint_ms=task_refresh_interval_hint_ms)
        # TODO(b/157105111): Make this an autotuned parallel map when we have a way
        # to limit memory usage.
        dataset = dataset.map(lambda x: compression_ops.uncompress(
            x, output_spec=uncompressed_spec))

        # Disable autosharding for shared jobs.
        if job_name:
            options = dataset_ops.Options()
            options.experimental_distribute.auto_shard_policy = AutoShardPolicy.OFF
            dataset = dataset.with_options(options)
        return dataset
コード例 #16
0
    def _get_test_datasets(self,
                           base_dataset,
                           map_fn,
                           num_parallel_calls=None,
                           expect_optimized=True):
        """Given base dataset and map fn, creates test datasets.

    Returns a tuple of (unoptimized dataset, optimized dataset). The
    unoptimized dataset has the assertion that Batch follows Map. The optimized
    dataset has the assertion that Map follows Batch, and has the
    "map_vectorization" optimization applied.

    Args:
      base_dataset: Input dataset to map->batch
      map_fn: Map function to use
      num_parallel_calls: (Optional.) num_parallel_calls argument for map
      expect_optimized: (Optional.) Whether we expect the optimization to take
        place, in which case we will assert that Batch is followed by Map,
        otherwise Map followed by Batch. Defaults to True.

    Returns:
      Tuple of (unoptimized dataset, optimized dataset).
    """
        map_node_name = "Map" if num_parallel_calls is None else "ParallelMap"

        def _make_dataset(node_names):
            dataset = base_dataset.apply(optimization.assert_next(node_names))
            dataset = dataset.map(map_fn, num_parallel_calls)
            dataset = dataset.batch(100)
            options = dataset_ops.Options()
            options.experimental_optimization.apply_default_optimizations = False
            options.experimental_optimization.map_and_batch_fusion = False
            dataset = dataset.with_options(options)
            return dataset

        unoptimized = _make_dataset([map_node_name, "Batch"])
        # Note that because of the `ChooseDataset` fork, we can't use `assert_next`
        # to verify the optimization result.
        optimized = _make_dataset(
            [] if expect_optimized else [map_node_name, "Batch"])
        options = dataset_ops.Options()
        options.experimental_optimization.apply_default_optimizations = False
        options.experimental_optimization.map_vectorization = True
        optimized = optimized.with_options(options)
        return unoptimized, optimized
コード例 #17
0
    def benchmark(label, series):
      """Runs benchmark the given series."""

      def make_dataset(element_size, num_calls, batch_size):  # pylint: disable=missing-docstring
        k = 1024 * 1024
        x = constant_op.constant(np.random.rand(element_size, 4 * k))
        y = constant_op.constant(np.random.rand(4 * k, 1))
        dataset = dataset_ops.Dataset.range(1000000000000).map(lambda _: (x, y))
        dataset = dataset.map(
            math_ops.matmul,
            num_parallel_calls=num_calls).batch(batch_size=batch_size)
        options = dataset_ops.Options()
        options.experimental_optimization.apply_default_optimizations = False
        return dataset.with_options(options)

      for num_calls, inter_op, element_size, batch_size in series:
        num_iters = 1024 // (
            (element_size * batch_size) // min(num_calls, inter_op))
        # By default the chained map().batch() calls will not be fused.
        chained_dataset = make_dataset(element_size, num_calls, batch_size)
        session_config = config_pb2.ConfigProto(
            inter_op_parallelism_threads=inter_op, use_per_session_threads=True)

        self.run_and_report_benchmark(
            dataset=chained_dataset,
            iters=num_iters,
            num_elements=batch_size,
            warmup=True,
            session_config=session_config,
            name=name("chained", label, num_calls, inter_op, element_size,
                      batch_size))

        # Apply an option to the default dataset that will fuse map().batch().
        options = dataset_ops.Options()
        options.experimental_optimization.map_and_batch_fusion = True
        fused_dataset = chained_dataset.with_options(options)

        self.run_and_report_benchmark(
            dataset=fused_dataset,
            iters=num_iters,
            num_elements=batch_size,
            warmup=True,
            session_config=session_config,
            name=name("fused", label, num_calls, inter_op, element_size,
                      batch_size))
コード例 #18
0
  def run_core_tests(self, ds_fn1, ds_fn2, num_outputs, sparse_tensors=False):
    """Runs the core tests.

    Args:
      ds_fn1: 0-argument function that returns a Dataset.
      ds_fn2: 0-argument function that returns a Dataset different from
        ds_fn1. If None, verify_restore_in_modified_graph test is not run.
      num_outputs: Total number of outputs expected from this Dataset.
      sparse_tensors: Whether dataset is built from SparseTensor(s).

    Raises:
      AssertionError if any test fails.
    """
    # NOTE: We disable all default optimizations in serialization tests in order
    # to test the actual dataset in question.
    options = dataset_ops.Options()
    options.experimental_optimization.apply_default_optimizations = False

    def ds_fn1_no_opt():
      return ds_fn1().with_options(options)

    self.verify_unused_iterator(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_fully_used_iterator(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_exhausted_iterator(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_init_before_restore(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_multiple_breaks(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_reset_restored_iterator(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    self.verify_restore_in_empty_graph(
        ds_fn1_no_opt, num_outputs, sparse_tensors=sparse_tensors)
    if ds_fn2:

      def ds_fn2_no_opt():
        return ds_fn2().with_options(options)

      self.verify_restore_in_modified_graph(
          ds_fn1_no_opt,
          ds_fn2_no_opt,
          num_outputs,
          sparse_tensors=sparse_tensors)
コード例 #19
0
    def _benchmark(self, dataset_fn, iters, num_elements):
        with ops.Graph().as_default():
            options = dataset_ops.Options()
            options.experimental_optimization.apply_default_optimizations = False
            dataset = dataset_fn().with_options(options)
            next_element = dataset_ops.make_one_shot_iterator(
                dataset).get_next()
            with session.Session() as sess:
                deltas = []
                for _ in range(iters):
                    start = time.time()
                    for _ in range(num_elements):
                        sess.run(next_element.op)
                    end = time.time()
                    deltas.append(end - start)

        mean_wall_time = np.mean(deltas) / num_elements
        self.report_benchmark(iters=iters, wall_time=mean_wall_time)
コード例 #20
0
  def _run_benchmark(self, dataset, autotune, autotune_buffers,
                     benchmark_iters, benchmark_label):
    options = dataset_ops.Options()
    options.experimental_optimization.apply_default_optimizations = False
    options.experimental_optimization.autotune = autotune
    options.experimental_optimization.autotune_buffers = autotune_buffers
    dataset = dataset.with_options(options)

    autotune_string = "_autotune_{}".format(
        "parallelism_and_buffer_sizes"
        if autotune_buffers else "parallelism_only")
    wall_time = self.run_and_report_benchmark(
        dataset=dataset,
        num_elements=benchmark_iters,
        warmup=True,
        iters=1,
        name=benchmark_label + (autotune_string if autotune else ""))
    return wall_time
コード例 #21
0
    def testCapturedInputs(self):
        a = constant_op.constant(3, dtype=dtypes.int64)
        b = constant_op.constant(4, dtype=dtypes.int64)
        some_tensor = math_ops.mul(a, b)
        function = lambda x: x * x

        def predicate(y):
            return math_ops.less(math_ops.cast(y, dtypes.int64), some_tensor)

        # We are currently not supporting functions with captured inputs.
        dataset = dataset_ops.Dataset.range(10).apply(
            testing.assert_next(["Map",
                                 "Filter"])).map(function).filter(predicate)
        options = dataset_ops.Options()
        options.experimental_optimization.apply_default_optimizations = False
        options.experimental_optimization.map_and_filter_fusion = True
        dataset = dataset.with_options(options)
        self._testDataset(dataset, function, predicate)
コード例 #22
0
    def testMapAndBatchFails(self, numa_aware):
        """Test a dataset that maps a TF function across its input elements."""
        dataset = dataset_ops.Dataset.from_tensors(
            array_ops.check_numerics(
                constant_op.constant(1.0) / constant_op.constant(0.0), "oops"))
        batch_size = array_ops.placeholder(dtypes.int64, shape=[])
        dataset = dataset.apply(batching.map_and_batch(lambda x: x,
                                                       batch_size))
        if numa_aware:
            options = dataset_ops.Options()
            options.experimental_numa_aware = True
            dataset = dataset.with_options(options)
        iterator = dataset.make_initializable_iterator()

        init_op = iterator.initializer
        with self.cached_session() as sess:
            with self.assertRaisesRegexp(errors.InvalidArgumentError, "oops"):
                sess.run(init_op, feed_dict={batch_size: 14})
コード例 #23
0
        def dataset_fn(delay_ms):
            def interleave_fn(x):
                ds = dataset_ops.Dataset.from_tensors(x)
                if math_ops.equal(x, 0):
                    ds = ds.apply(testing.sleep(delay_ms * 1000))
                else:
                    ds = ds.apply(testing.sleep(0))
                return ds

            dataset = dataset_ops.Dataset.from_tensor_slices(elements)
            dataset = dataset.interleave(interleave_fn,
                                         cycle_length=10,
                                         num_parallel_calls=10,
                                         deterministic=local_determinism)
            opts = dataset_ops.Options()
            opts.experimental_deterministic = global_determinism
            dataset = dataset.with_options(opts)
            return dataset
コード例 #24
0
 def testPrefetchWithSlackOption(self):
     """Determines slack_period based on num devices attached to iterator."""
     dataset = dataset_ops.Dataset.range(10)
     dataset = dataset.prefetch(1)
     options = dataset_ops.Options()
     options.experimental_slack = True
     dataset = dataset.with_options(options)
     multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator(
         dataset, [self._devices[1], self._devices[2]])
     self.evaluate(multi_device_iterator.initializer)
     for i in range(0, 10, 2):
         elem_on_1, elem_on_2 = multi_device_iterator.get_next()
         self.assertEqual(i, self.evaluate(elem_on_1))
         self.assertEqual(i + 1, self.evaluate(elem_on_2))
     with self.assertRaises(errors.OutOfRangeError):
         elem_on_1, elem_on_2 = multi_device_iterator.get_next()
         self.evaluate(elem_on_1)
         self.evaluate(elem_on_2)
コード例 #25
0
    def testShuffleAndRepeatFusion(self):
        dataset = dataset_ops.Dataset.range(10).apply(
            optimization.assert_next(["ShuffleAndRepeat"
                                      ])).shuffle(10).repeat(2)
        options = dataset_ops.Options()
        options.experimental_shuffle_and_repeat_fusion = True
        dataset = dataset.with_options(options)
        iterator = dataset.make_one_shot_iterator()
        get_next = iterator.get_next()

        with self.cached_session() as sess:
            for _ in range(2):
                results = []
                for _ in range(10):
                    results.append(sess.run(get_next))
                self.assertAllEqual([x for x in range(10)], sorted(results))
            with self.assertRaises(errors.OutOfRangeError):
                sess.run(get_next)
    def testAutotuningSettings(self):
        options = dataset_ops.Options()
        options.experimental_optimization.autotune_cpu_budget = 1000
        options.experimental_optimization.autotune_ram_budget = 999999999
        options.experimental_optimization.autotune_buffers = True
        self.assertIn("autotune_buffer_sizes",
                      options._graph_rewrites().enabled)
        self.assertIn("disable_prefetch_legacy_autotune",
                      options._graph_rewrites().enabled)

        autotune, algorithm, cpu_budget, ram_budget = options._autotune_settings(
        )
        self.assertTrue(autotune)
        self.assertEqual(
            algorithm,
            optimization_options._AutotuneAlgorithm.GRADIENT_DESCENT)
        self.assertEqual(cpu_budget, 1000)
        self.assertEqual(ram_budget, 999999999)
コード例 #27
0
    def testOptimizationMapParallelization(self, autotune,
                                           map_parallelization):
        dataset = dataset_ops.Dataset.range(5)
        if autotune is not False and map_parallelization is not False:  # pylint: disable=g-bool-id-comparison
            dataset = dataset.apply(testing.assert_next(["ParallelMap"]))
        else:
            dataset = dataset.apply(testing.assert_next(["Map"]))
        dataset = dataset.map(lambda x: x + 1)

        options = dataset_ops.Options()
        if autotune is not None:
            options.experimental_optimization.autotune = autotune
        if map_parallelization is not None:
            options.experimental_optimization.map_parallelization = (
                map_parallelization)
        dataset = dataset.with_options(options)

        self.assertDatasetProduces(dataset, expected_output=list(range(1, 6)))
コード例 #28
0
 def benchmark_batch_dense(self):
   for element_exp in [10, 12, 14, 16, 18, 20, 22]:
     for batch_exp in [3, 6, 9]:
       for parallel_copy in [True, False]:
         element_size = 1 << element_exp
         batch_size = 1 << batch_exp
         dataset = dataset_ops.Dataset.from_tensors(
             np.random.rand(element_size)).repeat().batch(batch_size)
         options = dataset_ops.Options()
         options.experimental_optimization.parallel_batch = parallel_copy
         dataset = dataset.with_options(options)
         tag = "_parallel" if parallel_copy else ""
         self.run_and_report_benchmark(
             dataset,
             num_elements=(1 << (22 - batch_exp - element_exp // 2)),
             iters=1,
             name="batch_element_size_%d_batch_size_%d%s" %
             (element_size, batch_size, tag))
コード例 #29
0
ファイル: interleave_test.py プロジェクト: Utree/AiLocker_v1
    def testSloppyInterleaveInOrder(self, input_values, cycle_length,
                                    block_length, num_parallel_calls):
        dataset, coordination_events = _make_coordinated_sloppy_dataset(
            input_values, cycle_length, block_length, num_parallel_calls)
        options = dataset_ops.Options()
        options.experimental_threading = threading_options.ThreadingOptions()
        options.experimental_threading.private_threadpool_size = (
            num_parallel_calls + 1)
        dataset = dataset.with_options(options)

        get_next = self.getNext(dataset, requires_initialization=True)
        for expected_element in _interleave(_repeat(input_values, 2),
                                            cycle_length, block_length):
            coordination_events[expected_element].set()
            self.assertEqual(expected_element * expected_element,
                             self.evaluate(get_next()))
        with self.assertRaises(errors.OutOfRangeError):
            self.evaluate(get_next())
コード例 #30
0
    def testUseLegacyRebatchWithDataSharding(self, sharding_policy,
                                             with_prefetch):
        # This test simulates a distributed environment with 3 workers, each with
        # 1 replica.
        dataset = dataset_ops.Dataset.range(8)
        dataset = dataset.batch(4)
        options = dataset_ops.Options()
        options.experimental_distribute.auto_shard_policy = sharding_policy
        dataset = dataset.with_options(options)
        # We expect the auto-shard rewrite to rewrite RebatchDatasetV2 to
        # RebatchDataset(V1) for correctness reasons. This will modify the output
        # of the dataset.
        worker_a_dataset = distribute._RebatchDataset(dataset,
                                                      batch_sizes=[2, 1, 1])
        if with_prefetch:
            worker_a_dataset = worker_a_dataset.prefetch(1)
        worker_a_dataset = distribute._AutoShardDataset(worker_a_dataset,
                                                        3,
                                                        0,
                                                        num_replicas=3)
        expected = [[0, 1], [4, 5]]
        self.assertDatasetProduces(worker_a_dataset, expected)

        worker_b_dataset = distribute._RebatchDataset(dataset,
                                                      batch_sizes=[1, 1, 2])
        if with_prefetch:
            worker_b_dataset = worker_b_dataset.prefetch(1)
        worker_b_dataset = distribute._AutoShardDataset(worker_b_dataset,
                                                        3,
                                                        1,
                                                        num_replicas=3)
        expected = [[2, 3], [6, 7]]
        self.assertDatasetProduces(worker_b_dataset, expected)

        worker_c_dataset = distribute._RebatchDataset(dataset,
                                                      batch_sizes=[1, 2, 1])
        if with_prefetch:
            worker_c_dataset = worker_c_dataset.prefetch(1)
        worker_c_dataset = distribute._AutoShardDataset(worker_c_dataset,
                                                        3,
                                                        2,
                                                        num_replicas=3)
        expected = [[], []]
        self.assertDatasetProduces(worker_c_dataset, expected)