def test_multi_dim(self): """Asserts evaluation metrics for multi-dimensional input and logits.""" # Create checkpoint: num_inputs=2, hidden_units=(2, 2), num_outputs=3. global_step = 100 _create_checkpoint(( ([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]), ), global_step, self._model_dir) label_dimension = 3 # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=[feature_column.numeric_column('age', shape=[2])], label_dimension=label_dimension, model_dir=self._model_dir) def _input_fn(): return {'age': [[10., 8.]]}, [[1., -1., 0.5]] # Uses identical numbers as # DNNModelFnTest.test_multi_dim_input_multi_dim_logits. # See that test for calculation of logits. # logits = [[-0.48, 0.48, 0.39]] # loss = (1+0.48)^2 + (-1-0.48)^2 + (0.5-0.39)^2 = 4.3929 expected_loss = 4.3929 self.assertAllClose( { metric_keys.MetricKeys.LOSS: expected_loss, metric_keys.MetricKeys.LOSS_MEAN: expected_loss / label_dimension, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=_input_fn, steps=1))
def test_one_dim(self): """Asserts evaluation metrics for one-dimensional input and logits.""" # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. global_step = 100 _create_checkpoint(( ([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]), ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=[feature_column.numeric_column('age')], model_dir=self._model_dir) def _input_fn(): return {'age': [[10.]]}, [[1.]] # Uses identical numbers as DNNModelTest.test_one_dim_logits. # See that test for calculation of logits. # logits = [[-2.08]] => predictions = [-2.08]. # loss = (1+2.08)^2 = 9.4864 expected_loss = 9.4864 self.assertAllClose( { metric_keys.MetricKeys.LOSS: expected_loss, metric_keys.MetricKeys.LOSS_MEAN: expected_loss, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=_input_fn, steps=1))
def test_multi_dim(self): """Asserts train loss for multi-dimensional input and logits.""" base_global_step = 100 hidden_units = (2, 2) _create_checkpoint(( ([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]), ), base_global_step, self._model_dir) input_dimension = 2 label_dimension = 3 # Uses identical numbers as # DNNModelFnTest.test_multi_dim_input_multi_dim_logits. # See that test for calculation of logits. # logits = [[-0.48, 0.48, 0.39]] # loss = (1+0.48)^2 + (-1-0.48)^2 + (0.5-0.39)^2 = 4.3929 expected_loss = 4.3929 mock_optimizer = _mock_optimizer(self, hidden_units=hidden_units, expected_loss=expected_loss) dnn_regressor = dnn.DNNRegressor(hidden_units=hidden_units, feature_columns=[ feature_column.numeric_column( 'age', shape=[input_dimension]) ], label_dimension=label_dimension, optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, then validate optimizer, summaries, and # checkpoint. num_steps = 5 summary_hook = _SummaryHook() dnn_regressor.train(input_fn=lambda: ({ 'age': [[10., 8.]] }, [[1., -1., 0.5]]), steps=num_steps, hooks=(summary_hook, )) self.assertEqual(1, mock_optimizer.minimize.call_count) summaries = summary_hook.summaries() self.assertEqual(num_steps, len(summaries)) for summary in summaries: _assert_simple_summary( self, { metric_keys.MetricKeys.LOSS_MEAN: expected_loss / label_dimension, 'dnn/dnn/hiddenlayer_0_fraction_of_zero_values': 0., 'dnn/dnn/hiddenlayer_1_fraction_of_zero_values': 0.5, 'dnn/dnn/logits_fraction_of_zero_values': 0., metric_keys.MetricKeys.LOSS: expected_loss, }, summary) _assert_checkpoint(self, base_global_step + num_steps, input_units=input_dimension, hidden_units=hidden_units, output_units=label_dimension, model_dir=self._model_dir)
def test_simple(self): # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. global_step = 100 _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('age'),), model_dir=self._model_dir) def _input_fn(): return {'age': ((1,),)}, ((10.,),) # TODO(ptucker): Point to tool for calculating a neural net output? # prediction = 1778 # loss = (10-1778)^2 = 3125824 expected_loss = 3125824 self.assertAllClose({ metric_keys.MetricKeys.LOSS: expected_loss, metric_keys.MetricKeys.LOSS_MEAN: expected_loss, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=_input_fn, steps=1))
def test_multi_dim(self): """Tests predict when all variables are multi-dimenstional.""" # Create checkpoint: num_inputs=4, hidden_units=(2, 2), num_outputs=3. _create_checkpoint(( (((1., 2.), (3., 4.), (5., 6.), (7., 8.),), (9., 8.)), (((7., 6.), (5., 4.),), (3., 2.)), (((1., 2., 3.), (4., 5., 6.),), (7., 8., 9.)), ), 100, self._model_dir) # Create DNNRegressor and predict. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x', shape=(4,)),), label_dimension=3, model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( # Inputs shape is (batch_size, num_inputs). x={'x': np.array(((1., 2., 3., 4.), (5., 6., 7., 8.)))}, batch_size=2, shuffle=False) # Output shape=(batch_size, num_outputs). self.assertAllClose(( # TODO(ptucker): Point to tool for calculating a neural net output? (3275., 4660., 6045.), (6939., 9876., 12813.) ), tuple([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in dnn_regressor.predict(input_fn=input_fn) ]), rtol=1e-04)
def test_one_dim(self): """Asserts predictions for one-dimensional input and logits.""" # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. _create_checkpoint(( ([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]), ), global_step=0, model_dir=self._model_dir) # Create DNNRegressor and predict. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x'), ), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn(x={'x': np.array([[10.]])}, batch_size=1, shuffle=False) # Uses identical numbers as DNNModelTest.test_one_dim_logits. # See that test for calculation of logits. # logits = [[-2.08]] => predictions = [-2.08]. self.assertAllClose( { prediction_keys.PredictionKeys.PREDICTIONS: [-2.08], }, next(dnn_regressor.predict(input_fn=input_fn)))
def test_multi_feature_column(self): # Create checkpoint: num_inputs=2, hidden_units=(2, 2), num_outputs=1. global_step = 100 _create_checkpoint(( (((1., 2.), (3., 4.),), (5., 6.)), (((7., 8.), (9., 8.),), (7., 6.)), (((5.,), (4.,),), (3.,)) ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('age'), feature_column.numeric_column('height')), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'age': np.array(((20,), (40,))), 'height': np.array(((4,), (8,)))}, y=np.array(((213.,), (421.,))), batch_size=2, shuffle=False) self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = 7315, 13771 # loss = ((213-7315)^2 + (421-13771)^2) / 2 = 228660896 metric_keys.MetricKeys.LOSS: 228660896., # average_loss = loss / 2 = 114330452 metric_keys.MetricKeys.LOSS_MEAN: 114330452., ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=input_fn, steps=1))
def test_multi_dim(self): """Asserts predictions for multi-dimensional input and logits.""" # Create checkpoint: num_inputs=2, hidden_units=(2, 2), num_outputs=3. _create_checkpoint(( ([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]), ), 100, self._model_dir) # Create DNNRegressor and predict. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x', shape=(2, )), ), label_dimension=3, model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( # Inputs shape is (batch_size, num_inputs). x={'x': np.array([[10., 8.]])}, batch_size=1, shuffle=False) # Uses identical numbers as # DNNModelFnTest.test_multi_dim_input_multi_dim_logits. # See that test for calculation of logits. # logits = [[-0.48, 0.48, 0.39]] => predictions = [-0.48, 0.48, 0.39] self.assertAllClose( { prediction_keys.PredictionKeys.PREDICTIONS: [-0.48, 0.48, 0.39], }, next(dnn_regressor.predict(input_fn=input_fn)))
def test_from_scratch(self): hidden_units = (2, 2) mock_optimizer = _mock_optimizer(self, hidden_units=hidden_units) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=(feature_column.numeric_column('age'), ), optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, then validate optimizer, summaries, and # checkpoint. num_steps = 5 summary_hook = _SummaryHook() dnn_regressor.train(input_fn=lambda: ({ 'age': ((1, ), ) }, ((5., ), )), steps=num_steps, hooks=(summary_hook, )) self.assertEqual(1, mock_optimizer.minimize.call_count) _assert_checkpoint(self, num_steps, input_units=1, hidden_units=hidden_units, output_units=1, model_dir=self._model_dir) summaries = summary_hook.summaries() self.assertEqual(num_steps, len(summaries)) for summary in summaries: summary_keys = [v.tag for v in summary.value] self.assertIn(metric_keys.MetricKeys.LOSS, summary_keys) self.assertIn(metric_keys.MetricKeys.LOSS_MEAN, summary_keys)
def test_multi_dim(self): # Create checkpoint: num_inputs=3, hidden_units=(2, 2), num_outputs=2. global_step = 100 _create_checkpoint(( (((1., 2.), (3., 4.), (5., 6.),), (7., 8.)), (((9., 8.), (7., 6.),), (5., 4.)), (((3., 2.), (1., 2.),), (3., 4.)), ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x', shape=(3,)),), label_dimension=2, model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array(((2., 4., 5.),))}, y=np.array(((46., 58.),)), batch_size=1, shuffle=False) self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = 3198, 3094 # loss = ((46-3198)^2 + (58-3094)^2) = 19152400 metric_keys.MetricKeys.LOSS: 19152400, # average_loss = loss / 2 = 9576200 metric_keys.MetricKeys.LOSS_MEAN: 9576200, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=input_fn, steps=1))
def test_multi_batch(self): # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. global_step = 100 _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('age'),), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'age': np.array(((1,), (2,), (3,)))}, y=np.array(((10,), (9,), (8,))), batch_size=1, shuffle=False) # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = 1778, 2251, 2724 # loss = ((10-1778)^2 + (9-2251)^2 + (8-2724)^2) / 3 = 5176348 expected_loss = 5176348. self.assertAllClose({ metric_keys.MetricKeys.LOSS: expected_loss, metric_keys.MetricKeys.LOSS_MEAN: expected_loss, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=input_fn, steps=3))
def test_multi_example(self): # Create initial checkpoint, 1 input, 2x2 hidden dims, 1 outputs. global_step = 100 _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('age'),), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'age': np.array(((1,), (2,), (3,)))}, y=np.array(((10,), (9,), (8,))), batch_size=3, shuffle=False) self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = 1778, 2251, 2724 # loss = ((10-1778)^2 + (9-2251)^2 + (8-2724)^2) = 15529044 metric_keys.MetricKeys.LOSS: 15529044., # average_loss = loss / 3 = 5176348 metric_keys.MetricKeys.LOSS_MEAN: 5176348., ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=input_fn, steps=1))
def test_weighted(self): # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. global_step = 100 _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), global_step, self._model_dir) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('age'),), model_dir=self._model_dir, weight_feature_key='label_weight') def _input_fn(): return {'age': ((1,),), 'label_weight': ((1.5,),)}, ((10.,),) self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # prediction = 1778 # loss = 1.5*((10-1778)^2) = 4688736 metric_keys.MetricKeys.LOSS: 4688736, # average_loss = loss / 1.5 = 3125824 metric_keys.MetricKeys.LOSS_MEAN: 3125824, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=_input_fn, steps=1))
def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir))
def test_complete_flow(self): label_dimension = 2 batch_size = 10 feature_columns = [feature_column.numeric_column('x', shape=(2,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # TRAIN # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) num_steps = 200 est.train(train_input_fn, steps=num_steps) # EVALUTE eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # TODO(ptucker): Deterministic test for predicted values? # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir))
def test_one_dim(self): """Asserts train loss for one-dimensional input and logits.""" base_global_step = 100 hidden_units = (2, 2) _create_checkpoint(( ([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]), ), base_global_step, self._model_dir) # Uses identical numbers as DNNModelFnTest.test_one_dim_logits. # See that test for calculation of logits. # logits = [-2.08] => predictions = [-2.08] # loss = (1 + 2.08)^2 = 9.4864 expected_loss = 9.4864 mock_optimizer = _mock_optimizer(self, hidden_units=hidden_units, expected_loss=expected_loss) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=(feature_column.numeric_column('age'), ), optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, then validate optimizer, summaries, and # checkpoint. num_steps = 5 summary_hook = _SummaryHook() dnn_regressor.train(input_fn=lambda: ({ 'age': [[10.]] }, [[1.]]), steps=num_steps, hooks=(summary_hook, )) self.assertEqual(1, mock_optimizer.minimize.call_count) summaries = summary_hook.summaries() self.assertEqual(num_steps, len(summaries)) for summary in summaries: _assert_simple_summary( self, { metric_keys.MetricKeys.LOSS_MEAN: expected_loss, 'dnn/dnn/hiddenlayer_0_fraction_of_zero_values': 0., 'dnn/dnn/hiddenlayer_1_fraction_of_zero_values': 0.5, 'dnn/dnn/logits_fraction_of_zero_values': 0., metric_keys.MetricKeys.LOSS: expected_loss, }, summary) _assert_checkpoint(self, base_global_step + num_steps, input_units=1, hidden_units=hidden_units, output_units=1, model_dir=self._model_dir)
def test_from_scratch_with_default_optimizer(self): hidden_units = (2, 2) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=(feature_column.numeric_column('age'),), model_dir=self._model_dir) # Train for a few steps, then validate final checkpoint. num_steps = 5 dnn_regressor.train( input_fn=lambda: ({'age': ((1,),)}, ((10,),)), steps=num_steps) self._assert_checkpoint( num_steps, input_units=1, hidden_units=hidden_units, output_units=1)
def test_activation_fn(self): base_global_step = 100 hidden_units = (2, 2) _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), base_global_step, self._model_dir) # Create DNNRegressor with mock optimizer. # TODO(ptucker): Point to tool for calculating a neural net output? # prediction = 36 # loss = (10-36)^2 = 676 expected_loss = 676. mock_optimizer = self._mockOptimizer( hidden_units=hidden_units, expected_loss=expected_loss) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=(feature_column.numeric_column('age'),), optimizer=mock_optimizer, model_dir=self._model_dir, activation_fn=nn.tanh) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, then validate optimizer, summaries, and # checkpoint. num_steps = 5 summary_hook = _SummaryHook() dnn_regressor.train( input_fn=lambda: ({'age': ((1,),)}, ((10.,),)), steps=num_steps, hooks=(summary_hook,)) self.assertEqual(1, mock_optimizer.minimize.call_count) summaries = summary_hook.summaries() self.assertEqual(num_steps, len(summaries)) for summary in summaries: self._assert_simple_summary({ metric_keys.MetricKeys.LOSS: expected_loss, metric_keys.MetricKeys.LOSS_MEAN: expected_loss, 'dnn/dnn/hiddenlayer_0_activation': 0., 'dnn/dnn/hiddenlayer_0_fraction_of_zero_values': 0., 'dnn/dnn/hiddenlayer_1_activation': 0., 'dnn/dnn/hiddenlayer_1_fraction_of_zero_values': 0., 'dnn/dnn/logits_activation': 0., 'dnn/dnn/logits_fraction_of_zero_values': 0., }, summary) self._assert_checkpoint( base_global_step + num_steps, input_units=1, hidden_units=hidden_units, output_units=1)
def test_1d(self): """Tests predict when all variables are one-dimensional.""" # Create checkpoint: num_inputs=1, hidden_units=(2, 2), num_outputs=1. _create_checkpoint(( (((1., 2.),), (3., 4.)), (((5., 6.), (7., 8.),), (9., 10.)), (((11.,), (12.,),), (13.,)) ), global_step=0, model_dir=self._model_dir) # Create DNNRegressor and predict. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x'),), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array(((1.,),))}, batch_size=1, shuffle=False) # TODO(ptucker): Point to tool for calculating a neural net output? # prediction = 1778 self.assertAllClose({ prediction_keys.PredictionKeys.PREDICTIONS: (1778.,) }, next(dnn_regressor.predict(input_fn=input_fn)))
def test_two_feature_columns(self): """Tests predict with two feature columns.""" # Create checkpoint: num_inputs=2, hidden_units=(2, 2), num_outputs=1. _create_checkpoint(( (((1., 2.), (3., 4.),), (5., 6.)), (((7., 8.), (9., 8.),), (7., 6.)), (((5.,), (4.,),), (3.,)) ), 100, self._model_dir) # Create DNNRegressor and predict. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=(feature_column.numeric_column('x'), feature_column.numeric_column('y')), model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array((20.,)), 'y': np.array((4.,))}, batch_size=1, shuffle=False) self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = 7315 prediction_keys.PredictionKeys.PREDICTIONS: (7315,) }, next(dnn_regressor.predict(input_fn=input_fn)))
def test_weighted_multi_batch(self): # Create checkpoint: num_inputs=4, hidden_units=(2, 2), num_outputs=3. global_step = 100 _create_checkpoint(( (((1., 2.), (3., 4.), (5., 6.), (7., 8.),), (9., 8.)), (((7., 6.), (5., 4.),), (3., 2.)), (((1., 2., 3.), (4., 5., 6.),), (7., 8., 9.)), ), global_step, self._model_dir) # Create batched input. input_fn = numpy_io.numpy_input_fn( x={ # Dimensions are (batch_size, feature_column.dimension). 'x': np.array(( (15., 0., 1.5, 135.2), (45., 45000., 1.8, 158.8), (21., 33000., 1.7, 207.1), (60., 10000., 1.6, 90.2) )), # TODO(ptucker): Add test for different weight shapes when we fix # head._compute_weighted_loss (currently it requires weights to be # same shape as labels & logits). 'label_weights': np.array(( (1., 1., 0.), (.5, 1., .1), (.5, 0., .9), (0., 0., 0.), )) }, # Label shapes is (batch_size, num_outputs). y=np.array(( (5., 2., 2.), (-2., 1., -4.), (-1., -1., -1.), (-4., 3., 9.), )), batch_size=1, shuffle=False) # Create DNNRegressor and evaluate. dnn_regressor = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=( # Dimension is number of inputs. feature_column.numeric_column( 'x', dtype=dtypes.int32, shape=(4,)), ), model_dir=self._model_dir, label_dimension=3, weight_feature_key='label_weights') self.assertAllClose({ # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = [ # [ 54033.5 76909.6 99785.7] # [8030393.8 11433082.4 14835771.0] # [5923209.2 8433014.8 10942820.4] # [1810021.6 2576969.6 3343917.6] # ] # losses = label_weights*(labels-predictions)^2 = [ # [ 2.91907881e+09 5.91477894e+09 0] # [ 3.22436284e+13 1.30715350e+14 2.20100220e+13] # [ 1.75422095e+13 0 1.07770806e+14] # [ 0 0 0] # ] # total_loss = sum(losses) = 3.10290850204e+14 # loss = total_loss / 4 = 7.7572712551e+13 metric_keys.MetricKeys.LOSS: 7.7572712551e+13, # average_loss = total_loss / sum(label_weights) = 6.20581700408e+13 metric_keys.MetricKeys.LOSS_MEAN: 6.20581700408e+13, ops.GraphKeys.GLOBAL_STEP: global_step }, dnn_regressor.evaluate(input_fn=input_fn, steps=4))
def test_weighted_multi_example_multi_column(self): hidden_units = (2, 2) base_global_step = 100 _create_checkpoint(( (((1., 2.), (3., 4.), (5., 6.), (7., 8.),), (9., 8.)), (((7., 6.), (5., 4.),), (3., 2.)), (((1., 2., 3.), (4., 5., 6.),), (7., 8., 9.)), ), base_global_step, self._model_dir) # Create DNNRegressor with mock optimizer. # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = [ # [ 54033.5 76909.6 99785.7] # [8030393.8 11433082.4 14835771.0] # [5923209.2 8433014.8 10942820.4] # [1810021.6 2576969.6 3343917.6] # ] # loss = sum(label_weights*(labels-predictions)^2) = 3.10290850204e+14 expected_loss = 3.10290850204e+14 mock_optimizer = self._mockOptimizer( hidden_units=hidden_units, expected_loss=expected_loss) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=( # Dimensions add up to 4 (number of inputs). feature_column.numeric_column( 'x', dtype=dtypes.int32, shape=(2,)), feature_column.numeric_column( 'y', dtype=dtypes.float32, shape=(2,)), ), optimizer=mock_optimizer, model_dir=self._model_dir, label_dimension=3, weight_feature_key='label_weights') self.assertEqual(0, mock_optimizer.minimize.call_count) # Create batched inputs. input_fn = numpy_io.numpy_input_fn( # NOTE: feature columns are concatenated in alphabetic order of keys. x={ # Inputs shapes are (batch_size, feature_column.dimension). 'x': np.array(( (15., 0.), (45., 45000.), (21., 33000.), (60., 10000.) )), 'y': np.array(( (1.5, 135.2), (1.8, 158.8), (1.7, 207.1), (1.6, 90.2) )), # TODO(ptucker): Add test for different weight shapes when we fix # head._compute_weighted_loss (currently it requires weights to be # same shape as labels & logits). 'label_weights': np.array(( (1., 1., 0.), (.5, 1., .1), (.5, 0., .9), (0., 0., 0.), )) }, # Labels shapes is (batch_size, num_outputs). y=np.array(( (5., 2., 2.), (-2., 1., -4.), (-1., -1., -1.), (-4., 3., 9.), )), batch_size=4, num_epochs=None, shuffle=False) # Train for 1 step, then validate optimizer, summaries, and checkpoint. summary_hook = _SummaryHook() dnn_regressor.train(input_fn=input_fn, steps=1, hooks=(summary_hook,)) self.assertEqual(1, mock_optimizer.minimize.call_count) summaries = summary_hook.summaries() self.assertEqual(1, len(summaries)) self._assert_simple_summary({ metric_keys.MetricKeys.LOSS: expected_loss, # average_loss = loss / sum(label_weights) = 3.10290850204e+14 / 5. # = 6.205817e+13 metric_keys.MetricKeys.LOSS_MEAN: 6.205817e+13, 'dnn/dnn/hiddenlayer_0_activation': 0., 'dnn/dnn/hiddenlayer_0_fraction_of_zero_values': 0., 'dnn/dnn/hiddenlayer_1_activation': 0., 'dnn/dnn/hiddenlayer_1_fraction_of_zero_values': 0., 'dnn/dnn/logits_activation': 0., 'dnn/dnn/logits_fraction_of_zero_values': 0., }, summaries[0]) self._assert_checkpoint( base_global_step + 1, input_units=4, # Sum of feature column dimensions. hidden_units=hidden_units, output_units=3) # = label_dimension # Train for 3 steps - we should still get the same loss since we're not # updating weights. dnn_regressor.train(input_fn=input_fn, steps=3) self.assertEqual(2, mock_optimizer.minimize.call_count) self._assert_checkpoint( base_global_step + 4, input_units=4, # Sum of feature column dimensions. hidden_units=hidden_units, output_units=3) # = label_dimension
def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressor(*args, **kwargs)
def DNNRegressorWithLayerAnnotations( # pylint: disable=invalid-name hidden_units, feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Adagrad', activation_fn=nn.relu, dropout=None, input_layer_partitioner=None, config=None, warm_start_from=None, loss_reduction=losses.Reduction.SUM, ): """A regressor for TensorFlow DNN models with layer annotations. This regressor is fuctionally identical to estimator.DNNRegressor as far as training and evaluating models is concerned. The key difference is that this classifier adds additional layer annotations, which can be used for computing Integrated Gradients. Integrated Gradients is a method for attributing a classifier's predictions to its input features (https://arxiv.org/pdf/1703.01365.pdf). Given an input instance, the method assigns attribution scores to individual features in proportion to the feature's importance to the classifier's prediction. See estimator.DNNRegressor for example code for training and evaluating models using this regressor. This regressor is checkpoint-compatible with estimator.DNNRegressor and therefore the following should work seamlessly: # Instantiate ordinary estimator as usual. estimator = tf.estimator.DNNRegressor( config, feature_columns, hidden_units, ...) # Train estimator, export checkpoint. tf.estimator.train_and_evaluate(estimator, ...) # Instantiate estimator with annotations with the same configuration as the # ordinary estimator. estimator_with_annotations = ( tf.contrib.estimator.DNNRegressorWithLayerAnnotations( config, feature_columns, hidden_units, ...)) # Call export_savedmodel with the same arguments as the ordinary estimator, # using the checkpoint produced for the ordinary estimator. estimator_with_annotations.export_saved_model( export_dir_base, serving_input_receiver, ... checkpoint_path='/path/to/ordinary/estimator/checkpoint/model.ckpt-1234') Args: hidden_units: Iterable of number hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `_FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. optimizer: An instance of `tf.Optimizer` used to train the model. Defaults to Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not `None`, the probability we will drop out a given coordinate. input_layer_partitioner: Optional. Partitioner for input layer. Defaults to `min_max_variable_partitioner` with `min_slice_size` 64 << 20. config: `RunConfig` object to configure the runtime settings. warm_start_from: A string filepath to a checkpoint to warm-start from, or a `WarmStartSettings` object to fully configure warm-starting. If the string filepath is provided instead of a `WarmStartSettings`, then all weights are warm-started, and it is assumed that vocabularies and Tensor names are unchanged. loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. Defaults to `SUM`. Returns: DNNRegressor with layer annotations. """ original = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=feature_columns, model_dir=model_dir, label_dimension=label_dimension, weight_column=weight_column, optimizer=optimizer, activation_fn=activation_fn, dropout=dropout, input_layer_partitioner=input_layer_partitioner, config=config, warm_start_from=warm_start_from, loss_reduction=loss_reduction, ) def _model_fn(features, labels, mode, config): with _monkey_patch( feature_column_lib, '_internal_input_layer', make_input_layer_with_layer_annotations( feature_column_lib._internal_input_layer)): # pylint: disable=protected-access return original.model_fn(features, labels, mode, config) return estimator.Estimator( model_fn=_model_fn, model_dir=model_dir, config=config, warm_start_from=warm_start_from)
def test_weighted_multi_batch(self): hidden_units = (2, 2) base_global_step = 100 _create_checkpoint(( (((1., 2.), (3., 4.), (5., 6.), (7., 8.),), (9., 8.)), (((7., 6.), (5., 4.),), (3., 2.)), (((1., 2., 3.), (4., 5., 6.),), (7., 8., 9.)), ), base_global_step, self._model_dir) mock_optimizer = self._mockOptimizer(hidden_units=hidden_units) dnn_regressor = dnn.DNNRegressor( hidden_units=hidden_units, feature_columns=( # Dimension is number of inputs. feature_column.numeric_column( 'x', dtype=dtypes.int32, shape=(4,)), ), optimizer=mock_optimizer, model_dir=self._model_dir, label_dimension=3, weight_feature_key='label_weights') self.assertEqual(0, mock_optimizer.minimize.call_count) # Create batched input. input_fn = numpy_io.numpy_input_fn( x={ # Inputs shape is (batch_size, feature_column.dimension). 'x': np.array(( (15., 0., 1.5, 135.2), (45., 45000., 1.8, 158.8), (21., 33000., 1.7, 207.1), (60., 10000., 1.6, 90.2) )), # TODO(ptucker): Add test for different weight shapes when we fix # head._compute_weighted_loss (currently it requires weights to be # same shape as labels & logits). 'label_weights': np.array(( (1., 1., 0.), (.5, 1., .1), (.5, 0., .9), (0., 0., 0.), )) }, # Labels shapes is (batch_size, num_outputs). y=np.array(( (5., 2., 2.), (-2., 1., -4.), (-1., -1., -1.), (-4., 3., 9.), )), batch_size=1, shuffle=False) # Train for 1 step, then validate optimizer, summaries, and checkpoint. num_steps = 4 summary_hook = _SummaryHook() dnn_regressor.train( input_fn=input_fn, steps=num_steps, hooks=(summary_hook,)) self.assertEqual(1, mock_optimizer.minimize.call_count) summaries = summary_hook.summaries() self.assertEqual(num_steps, len(summaries)) # TODO(ptucker): Point to tool for calculating a neural net output? # predictions = [ # [ 54033.5 76909.6 99785.7] # [8030393.8 11433082.4 14835771.0] # [5923209.2 8433014.8 10942820.4] # [1810021.6 2576969.6 3343917.6] # ] # losses = label_weights*(labels-predictions)^2 = [ # [2.91907881e+09 5.91477894e+09 0] # [3.22436284e+13 1.30715350e+14 2.20100220e+13] # [1.75422095e+13 0 1.07770806e+14] # [ 0 0 0] # ] # step_losses = [sum(losses[i]) for i in 0...3] # = [8833857750, 1.84969e+14, 1.2531302e+14, 0] expected_step_losses = (8833857750, 1.84969e+14, 1.2531302e+14, 0) # step_average_losses = [ # step_losses[i] / sum(label_weights[i]) for i in 0...3 # ] = [4416928875, 1.1560563e+14, 8.95093e+13, 0] expected_step_average_losses = (4416928875, 1.1560563e+14, 8.95093e+13, 0) for i in range(len(summaries)): self._assert_simple_summary({ metric_keys.MetricKeys.LOSS: expected_step_losses[i], metric_keys.MetricKeys.LOSS_MEAN: expected_step_average_losses[i], 'dnn/dnn/hiddenlayer_0_activation': 0., 'dnn/dnn/hiddenlayer_0_fraction_of_zero_values': 0., 'dnn/dnn/hiddenlayer_1_activation': 0., 'dnn/dnn/hiddenlayer_1_fraction_of_zero_values': 0., 'dnn/dnn/logits_activation': 0., 'dnn/dnn/logits_fraction_of_zero_values': 0., }, summaries[i]) self._assert_checkpoint( base_global_step + num_steps, input_units=4, # Sum of feature column dimensions. hidden_units=hidden_units, output_units=3) # = label_dimension