def __init__(self, target, parent_graph=None): """Initializes an ImperativeMode. Args: target: The TensorFlow execution engine to connect to. parent_graph: (Optional) An ImperativeGraph. Raises: UnimplementedError: if non-None parent_graph is not an ImperativeGraph. """ self._target = target self._parent_graph = parent_graph # Create a new graph self._graph = imperative_graph.ImperativeGraph( parent_graph=self._parent_graph) self._default_graph = self._graph.as_default() # Context manager to record variable inits self._record_variable_inits = self._graph.record_variable_inits() if self._parent_graph: if not isinstance(self._parent_graph, imperative_graph.ImperativeGraph): raise errors.UnimplementedError( None, None, 'ImperativeMode needs an ' 'ImperativeGraph') # Clone the `_parent_graph` in to the current graph. This is so that # operations used from the enclosing ImperativeMode context are # available in the current context. with self._graph.as_default(), self._graph.return_as_is(): importer.import_graph_def(self._parent_graph.as_graph_def(), name='') self._session = session.Session(graph=self._graph, target=self._target) # Override the `_session`'s run, so that variable inits can be # called before the actual run. self._old_run = self._session.run self._session.run = self.run self._context_managers = [ self._session.as_default(), self._default_graph, self._record_variable_inits, imperative_graph.add_session_attr(ops.Tensor, self._session) ]
def _eval(self, tensor): """Returns the value in the tensor. Must be implemented in sub-classes.""" raise errors.UnimplementedError( "The evaluation method should be implemented in sub-classes.")
def create_op(self, *args, **kwargs): """Creates an `Operation`. For operations of the following form orig_value = op(*args, **kwargs) this function constructs the following subgraph : v = Variable() if v is not initialized: orig_value = op(*args, **kwargs) v.assign(orig_value) # Initializes v return orig_value else: return v The above transformation is not performed and the original op is returned as is if any of the following is true: * `_return_as_is` flag is set to true. * op_type is listed in _PASS_THROUGH_OPS * op has no outputs. * One of the op's return value has a ref type. Args: *args: Arguments for create_op() **kwargs: Keyword arguments for create_op(). Refer to tensorflow.python.framework.ops.Graph.create_op() for the mandatory and optional arguments. Returns: An Operation. Raises: UnimplementedError: if output type is a reference and the op's type is not one of the supported types in `_REF_OPS_WHITELIST`. """ op_type = kwargs['op_type'] if 'op_type' in kwargs else args[0] output_dtypes = kwargs['dtypes'] if 'dtypes' in kwargs else args[2] output_dtypes = [dtypes.as_dtype(d) for d in output_dtypes] if self._return_as_is or op_type in _PASS_THROUGH_OPS: return self._wrap( super(ImperativeGraph, self).create_op(*args, **kwargs)) if not output_dtypes: return self._wrap( super(ImperativeGraph, self).create_op(*args, **kwargs)) output_has_ref = any([dtype._is_ref_dtype for dtype in output_dtypes]) # pylint: disable=protected-access if output_has_ref: if op_type not in _REF_OPS_WHITELIST: raise errors.UnimplementedError( None, None, op_type + ' op not supported in ' 'imperative graph') ret = super(ImperativeGraph, self).create_op(*args, **kwargs) if self._in_variable_creation: if op_type == 'Assign': self.add_pending_init(ret) return self._wrap(ret) with self.return_as_is(): # Declares the variables to hold the output values of this op. op_output_var = [ state_ops.variable_op_v2(tensor_shape.TensorShape(None), dtype, container=self._name) for dtype in output_dtypes ] # Ops to free the resources used by the temporary cache variables. # The following two ops are created for each cache variable, # having no control dependencies on any other ops : # var_handle_op ----> destroy_resource_op for dtype, v in zip(output_dtypes, op_output_var): with ops.control_dependencies(None): self._variable_cleanup_ops += [ gen_resource_variable_ops.destroy_resource_op( gen_resource_variable_ops.var_handle_op( dtype, tensor_shape.TensorShape(None), container=self._name, shared_name=v.op.name), ignore_lookup_error=True) ] # Create the conditional to run the original op only when the variable # corresponding to the first output is not initialized. inited = state_ops.is_variable_initialized(op_output_var[0]) v_f, v_t = control_flow_ops.ref_switch(op_output_var[0], inited) # pylint: disable=protected-access v_f_op = gen_array_ops._ref_identity(v_f) v_t_op = gen_array_ops._ref_identity(v_t) # pylint: enable=protected-access with ops.control_dependencies([v_f_op.op]): # Create the original op orig_op = self._wrap( super(ImperativeGraph, self).create_op(*args, **kwargs)) shapes = [val.get_shape() for val in orig_op.outputs] controls = [] for var, val in zip(op_output_var, orig_op.outputs): if (not val.get_shape().is_fully_defined() or val.get_shape().num_elements() > 0): assign_op = state_ops.assign(var, val, validate_shape=False) assign_op.set_shape(val.get_shape()) controls.append(assign_op) values = [] if len(controls) > 1: if control_flow_ops.IsSwitch(orig_op): # pylint: disable=protected-access controls = gen_control_flow_ops._ref_merge(controls) # pylint: enable=protected-access else: controls = control_flow_ops.tuple(controls) for var, val in zip(op_output_var, orig_op.outputs): with ops.control_dependencies(controls): with self.colocate_with(v_f_op): real_val = array_ops.identity(val) with ops.control_dependencies([v_t_op.op]): with self.colocate_with(v_t_op): stored_val = array_ops.identity(var) stored_val.set_shape(val.get_shape()) real_val, _ = control_flow_ops.merge( [real_val, stored_val]) real_val.op.node_def.attr['_gradient_op_type'].CopyFrom( attr_value_pb2.AttrValue( s=compat.as_bytes(self._merge_op_type))) values.append(real_val) for i, _ in enumerate(shapes): values[i].set_shape(shapes[i]) self._outputs_map[orig_op.name] = values try: self._gradient_function_map[ orig_op.name] = ops.get_gradient_function(orig_op) except (KeyError, LookupError): pass else: orig_op.node_def.attr['_gradient_op_type'].CopyFrom( attr_value_pb2.AttrValue( s=compat.as_bytes(self._imperative_op_type))) return MultiOutputOperation(values)