コード例 #1
0
 def body(img):
     with scopes.ipu_scope('/device:IPU:0'):
         if mode == 'sharded':
             with autoshard.ipu_autoshard():
                 probs = tf.import_graph_def(
                     network.optimized_graph,
                     input_map={network.graph_input: img},
                     name="optimized",
                     return_elements=[network.graph_output])[0]
             autoshard.automatic_sharding(num_shards=num_ipus,
                                          input_ts=img,
                                          loss_ts=probs,
                                          frozen_inference=True)
             outfeed_op = outfeed_queue.enqueue(probs)
             outfeed_op._set_attr(
                 sharding._XLA_SHARDING,
                 attr_value_pb2.AttrValue(
                     s=probs.op.get_attr('_XlaSharding')))
         else:
             probs = tf.import_graph_def(
                 network.optimized_graph,
                 input_map={network.graph_input: img},
                 name="optimized",
                 return_elements=[network.graph_output])[0]
             outfeed_op = outfeed_queue.enqueue(probs)
         # Note that enqueue happens on the IPU.
         return outfeed_op
コード例 #2
0
def auto_sharding(pa, pb, pc):
    # This context marks the section of the graph to autoshard.
    # In this case we want to autoshard across the whole graph
    # so this context isn't actually required.
    with autoshard.ipu_autoshard():
        o1 = pa + pb
        o2 = pa + pc
        out = o1 + o2
        return out