コード例 #1
0
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    shapes = [K.int_shape(p) for p in params]
    accumulators = [K.zeros(shape) for shape in shapes]
    delta_accumulators = [K.zeros(shape) for shape in shapes]
    self.weights = accumulators + delta_accumulators
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr = lr * (1. /  # pylint: disable=g-no-augmented-assignment
                 (1. + self.decay * K.cast(self.iterations,
                                           K.dtype(self.decay))))

    for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
      # update accumulator
      new_a = self.rho * a + (1. - self.rho) * K.square(g)
      self.updates.append(K.update(a, new_a))

      # use the new accumulator and the *old* delta_accumulator
      update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)
      new_p = p - lr * update

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))

      # update delta_accumulator
      new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
      self.updates.append(K.update(d_a, new_d_a))
    return self.updates
コード例 #2
0
ファイル: optimizers.py プロジェクト: AndrewTwinz/tensorflow
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    shapes = [K.int_shape(p) for p in params]
    accumulators = [K.zeros(shape) for shape in shapes]
    delta_accumulators = [K.zeros(shape) for shape in shapes]
    self.weights = accumulators + delta_accumulators
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr = lr * (1. /  # pylint: disable=g-no-augmented-assignment
                 (1. + self.decay * K.cast(self.iterations,
                                           K.dtype(self.decay))))

    for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
      # update accumulator
      new_a = self.rho * a + (1. - self.rho) * K.square(g)
      self.updates.append(K.update(a, new_a))

      # use the new accumulator and the *old* delta_accumulator
      update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)
      new_p = p - lr * update

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))

      # update delta_accumulator
      new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
      self.updates.append(K.update(d_a, new_d_a))
    return self.updates
コード例 #3
0
def total_variation_loss(x):
    assert K.ndim(x) == 4
    a = K.square(x[:, :img_width - 1, :img_height - 1, :] -
                 x[:, 1:, :img_height - 1, :])
    b = K.square(x[:, :img_width - 1, :img_height - 1, :] -
                 x[:, :img_width - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))
コード例 #4
0
def dice_coef(y_true, y_pred, smooth=1e-5):
    """
    Dice = (2*|X & Y|)/ (|X|+ |Y|)
         =  2*sum(|A*B|)/(sum(A^2)+sum(B^2))
    ref: https://arxiv.org/pdf/1606.04797v1.pdf
    THIS IS NOT DICE BUT ...
    """
    intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
    return (2. * intersection + smooth) / (
        K.sum(K.square(y_true), -1) + K.sum(K.square(y_pred), -1) + smooth)
コード例 #5
0
 def __call__(self, x):
   regularization = 0.
   if self.l1:
     regularization += K.sum(self.l1 * K.abs(x))
   if self.l2:
     regularization += K.sum(self.l2 * K.square(x))
   return regularization
コード例 #6
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. /
                   (1. +
                    self.decay * K.cast(self.iterations, K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates
コード例 #7
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        accumulators = [
            K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params
        ]
        self.weights = accumulators
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. /
                   (1. +
                    self.decay * K.cast(self.iterations, K.dtype(self.decay))))

        for p, g, a in zip(params, grads, accumulators):
            # update accumulator
            new_a = self.rho * a + (1. - self.rho) * K.square(g)
            self.updates.append(K.update(a, new_a))
            new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates
コード例 #8
0
 def __call__(self, w):
   norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
   desired = (
       self.rate * K.clip(norms, self.min_value, self.max_value) +
       (1 - self.rate) * norms)
   w *= (desired / (K.epsilon() + norms))
   return w
コード例 #9
0
ファイル: optimizers.py プロジェクト: AndrewTwinz/tensorflow
  def get_gradients(self, loss, params):
    """Returns gradients of `loss` with respect to `params`.

    Arguments:
        loss: Loss tensor.
        params: List of variables.

    Returns:
        List of gradient tensors.

    Raises:
        ValueError: In case any gradient cannot be computed (e.g. if gradient
          function not implemented).
    """
    grads = K.gradients(loss, params)
    if None in grads:
      raise ValueError('An operation has `None` for gradient. '
                       'Please make sure that all of your ops have a '
                       'gradient defined (i.e. are differentiable). '
                       'Common ops without gradient: '
                       'K.argmax, K.round, K.eval.')
    if hasattr(self, 'clipnorm') and self.clipnorm > 0:
      norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
      grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
    if hasattr(self, 'clipvalue') and self.clipvalue > 0:
      grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
    return grads
コード例 #10
0
    def get_gradients(self, loss, params):
        """Returns gradients of `loss` with respect to `params`.

    Arguments:
        loss: Loss tensor.
        params: List of variables.

    Returns:
        List of gradient tensors.

    Raises:
        ValueError: In case any gradient cannot be computed (e.g. if gradient
          function not implemented).
    """
        grads = K.gradients(loss, params)
        if None in grads:
            raise ValueError('An operation has `None` for gradient. '
                             'Please make sure that all of your ops have a '
                             'gradient defined (i.e. are differentiable). '
                             'Common ops without gradient: '
                             'K.argmax, K.round, K.eval.')
        if hasattr(self, 'clipnorm') and self.clipnorm > 0:
            norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
            grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
        if hasattr(self, 'clipvalue') and self.clipvalue > 0:
            grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
        return grads
コード例 #11
0
 def __call__(self, x):
   regularization = 0.
   if self.l1:
     regularization += K.sum(self.l1 * K.abs(x))
   if self.l2:
     regularization += K.sum(self.l2 * K.square(x))
   return regularization
コード例 #12
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        shapes = [K.int_shape(p) for p in params]
        accumulators = [K.zeros(shape) for shape in shapes]
        self.weights = accumulators
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (
                1. /  # pylint: disable=g-no-augmented-assignment
                (1. +
                 self.decay * K.cast(self.iterations, K.dtype(self.decay))))

        for p, g, a in zip(params, grads, accumulators):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append(K.update(a, new_a))
            new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates
コード例 #13
0
ファイル: optimizers.py プロジェクト: japrogramer/tensorflow
 def get_gradients(self, loss, params):
   grads = K.gradients(loss, params)
   if hasattr(self, 'clipnorm') and self.clipnorm > 0:
     norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
     grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
   if hasattr(self, 'clipvalue') and self.clipvalue > 0:
     grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
   return grads
コード例 #14
0
ファイル: optimizers.py プロジェクト: zqli-90s/tensorflow
 def get_gradients(self, loss, params):
     grads = K.gradients(loss, params)
     if hasattr(self, 'clipnorm') and self.clipnorm > 0:
         norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
         grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
     if hasattr(self, 'clipvalue') and self.clipvalue > 0:
         grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
     return grads
コード例 #15
0
def style_loss(style, combination, nb_channels=None):
    assert K.ndim(style) == 3
    assert K.ndim(combination) == 3

    S = gram_matrix(style)
    C = gram_matrix(combination)
    channels = 3
    size = img_width * img_height
    return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
コード例 #16
0
def content_loss(base, combination):
    channel_dim = -1

    try:
        channels = K.int_shape(base)[channel_dim]
    except TypeError:
        channels = K.shape(base)[channel_dim]
    size = img_width * img_height

    if args.content_loss_type == 1:
        multiplier = 1. / (2. * (channels ** 0.5) * (size ** 0.5))
    elif args.content_loss_type == 2:
        multiplier = 1. / (channels * size)
    else:
        multiplier = 1.

    return multiplier * K.sum(K.square(combination - base))
コード例 #17
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1

        # Due to the recommendations in [2], i.e. warming momentum schedule
        momentum_cache_t = self.beta_1 * (
            1. - 0.5 *
            (K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
        momentum_cache_t_1 = self.beta_1 * (
            1. - 0.5 * (K.pow(K.cast_to_floatx(0.96),
                              (t + 1) * self.schedule_decay)))
        m_schedule_new = self.m_schedule * momentum_cache_t
        m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
        self.updates.append((self.m_schedule, m_schedule_new))

        shapes = [K.int_shape(p) for p in params]
        ms = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]

        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            # the following equations given in [1]
            g_prime = g / (1. - m_schedule_new)
            m_t = self.beta_1 * m + (1. - self.beta_1) * g
            m_t_prime = m_t / (1. - m_schedule_next)
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
            m_t_bar = (1. - momentum_cache_t
                       ) * g_prime + momentum_cache_t_1 * m_t_prime

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))

            p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates
コード例 #18
0
ファイル: optimizers.py プロジェクト: AndrewTwinz/tensorflow
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]

    t = K.cast(self.iterations, K.floatx()) + 1

    # Due to the recommendations in [2], i.e. warming momentum schedule
    momentum_cache_t = self.beta_1 * (
        1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
    momentum_cache_t_1 = self.beta_1 * (
        1. - 0.5 *
        (K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay)))
    m_schedule_new = self.m_schedule * momentum_cache_t
    m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
    self.updates.append((self.m_schedule, m_schedule_new))

    shapes = [K.int_shape(p) for p in params]
    ms = [K.zeros(shape) for shape in shapes]
    vs = [K.zeros(shape) for shape in shapes]

    self.weights = [self.iterations] + ms + vs

    for p, g, m, v in zip(params, grads, ms, vs):
      # the following equations given in [1]
      g_prime = g / (1. - m_schedule_new)
      m_t = self.beta_1 * m + (1. - self.beta_1) * g
      m_t_prime = m_t / (1. - m_schedule_next)
      v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
      v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
      m_t_bar = (
          1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime

      self.updates.append(K.update(m, m_t))
      self.updates.append(K.update(v, v_t))

      p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
      new_p = p_t

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates
コード例 #19
0
ファイル: optimizers.py プロジェクト: AndrewTwinz/tensorflow
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr = lr * (1. /  # pylint: disable=g-no-augmented-assignment
                 (1. + self.decay * K.cast(self.iterations,
                                           K.dtype(self.decay))))

    t = K.cast(self.iterations, K.floatx()) + 1
    lr_t = lr * (
        K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

    ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    if self.amsgrad:
      vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    else:
      vhats = [K.zeros(1) for _ in params]
    self.weights = [self.iterations] + ms + vs + vhats

    for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
      m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
      v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
      if self.amsgrad:
        vhat_t = K.maximum(vhat, v_t)
        p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
        self.updates.append(K.update(vhat, vhat_t))
      else:
        p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

      self.updates.append(K.update(m, m_t))
      self.updates.append(K.update(v, v_t))
      new_p = p_t

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates
コード例 #20
0
ファイル: optimizers.py プロジェクト: ChengYuXiang/tensorflow
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    shapes = [K.int_shape(p) for p in params]
    accumulators = [K.zeros(shape) for shape in shapes]
    self.weights = accumulators
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr *= (1. /
             (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay))))

    for p, g, a in zip(params, grads, accumulators):
      new_a = a + K.square(g)  # update accumulator
      self.updates.append(K.update(a, new_a))
      new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates
コード例 #21
0
ファイル: optimizers.py プロジェクト: AndrewTwinz/tensorflow
  def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    self.weights = accumulators
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr = lr * (1. /  # pylint: disable=g-no-augmented-assignment
                 (1. + self.decay * K.cast(self.iterations,
                                           K.dtype(self.decay))))

    for p, g, a in zip(params, grads, accumulators):
      # update accumulator
      new_a = self.rho * a + (1. - self.rho) * K.square(g)
      self.updates.append(K.update(a, new_a))
      new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates
コード例 #22
0
ファイル: constraints.py プロジェクト: 1000sprites/tensorflow
 def __call__(self, w):
   norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
   desired = K.clip(norms, 0, self.max_value)
   w *= (desired / (K.epsilon() + norms))
   return w
コード例 #23
0
ファイル: constraints.py プロジェクト: 1000sprites/tensorflow
 def __call__(self, w):
   return w / (
       K.epsilon() + K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)))
コード例 #24
0
 def __call__(self, w):
     return w / (K.epsilon() +
                 K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)))
コード例 #25
0
 def __call__(self, w):
     norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
     desired = K.clip(norms, 0, self.max_value)
     w *= (desired / (K.epsilon() + norms))
     return w
コード例 #26
0
 def __call__(self, w):
     norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
     desired = (self.rate * K.clip(norms, self.min_value, self.max_value) +
                (1 - self.rate) * norms)
     w *= (desired / (K.epsilon() + norms))
     return w
コード例 #27
0
def mean_squared_error(y_true, y_pred):
  return K.mean(K.square(y_pred - y_true), axis=-1)
コード例 #28
0
def squared_hinge(y_true, y_pred):
  return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
コード例 #29
0
def mean_squared_logarithmic_error(y_true, y_pred):
  first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
  second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
  return K.mean(K.square(first_log - second_log), axis=-1)