def get_updates(self, loss, params): grads = self.get_gradients(loss, params) shapes = [K.int_shape(p) for p in params] accumulators = [K.zeros(shape) for shape in shapes] delta_accumulators = [K.zeros(shape) for shape in shapes] self.weights = accumulators + delta_accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / # pylint: disable=g-no-augmented-assignment (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators): # update accumulator new_a = self.rho * a + (1. - self.rho) * K.square(g) self.updates.append(K.update(a, new_a)) # use the new accumulator and the *old* delta_accumulator update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon) new_p = p - lr * update # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) # update delta_accumulator new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update) self.updates.append(K.update(d_a, new_d_a)) return self.updates
def total_variation_loss(x): assert K.ndim(x) == 4 a = K.square(x[:, :img_width - 1, :img_height - 1, :] - x[:, 1:, :img_height - 1, :]) b = K.square(x[:, :img_width - 1, :img_height - 1, :] - x[:, :img_width - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25))
def dice_coef(y_true, y_pred, smooth=1e-5): """ Dice = (2*|X & Y|)/ (|X|+ |Y|) = 2*sum(|A*B|)/(sum(A^2)+sum(B^2)) ref: https://arxiv.org/pdf/1606.04797v1.pdf THIS IS NOT DICE BUT ... """ intersection = K.sum(K.abs(y_true * y_pred), axis=-1) return (2. * intersection + smooth) / ( K.sum(K.square(y_true), -1) + K.sum(K.square(y_pred), -1) + smooth)
def __call__(self, x): regularization = 0. if self.l1: regularization += K.sum(self.l1 * K.abs(x)) if self.l2: regularization += K.sum(self.l2 * K.square(x)) return regularization
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) accumulators = [ K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params ] self.weights = accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): # update accumulator new_a = self.rho * a + (1. - self.rho) * K.square(g) self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def __call__(self, w): norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)) desired = ( self.rate * K.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms) w *= (desired / (K.epsilon() + norms)) return w
def get_gradients(self, loss, params): """Returns gradients of `loss` with respect to `params`. Arguments: loss: Loss tensor. params: List of variables. Returns: List of gradient tensors. Raises: ValueError: In case any gradient cannot be computed (e.g. if gradient function not implemented). """ grads = K.gradients(loss, params) if None in grads: raise ValueError('An operation has `None` for gradient. ' 'Please make sure that all of your ops have a ' 'gradient defined (i.e. are differentiable). ' 'Common ops without gradient: ' 'K.argmax, K.round, K.eval.') if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] return grads
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) shapes = [K.int_shape(p) for p in params] accumulators = [K.zeros(shape) for shape in shapes] self.weights = accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * ( 1. / # pylint: disable=g-no-augmented-assignment (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): new_a = a + K.square(g) # update accumulator self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_gradients(self, loss, params): grads = K.gradients(loss, params) if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] return grads
def style_loss(style, combination, nb_channels=None): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_width * img_height return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
def content_loss(base, combination): channel_dim = -1 try: channels = K.int_shape(base)[channel_dim] except TypeError: channels = K.shape(base)[channel_dim] size = img_width * img_height if args.content_loss_type == 1: multiplier = 1. / (2. * (channels ** 0.5) * (size ** 0.5)) elif args.content_loss_type == 2: multiplier = 1. / (channels * size) else: multiplier = 1. return multiplier * K.sum(K.square(combination - base))
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 # Due to the recommendations in [2], i.e. warming momentum schedule momentum_cache_t = self.beta_1 * ( 1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay))) momentum_cache_t_1 = self.beta_1 * ( 1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay))) m_schedule_new = self.m_schedule * momentum_cache_t m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1 self.updates.append((self.m_schedule, m_schedule_new)) shapes = [K.int_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): # the following equations given in [1] g_prime = g / (1. - m_schedule_new) m_t = self.beta_1 * m + (1. - self.beta_1) * g m_t_prime = m_t / (1. - m_schedule_next) v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g) v_t_prime = v_t / (1. - K.pow(self.beta_2, t)) m_t_bar = (1. - momentum_cache_t ) * g_prime + momentum_cache_t_1 * m_t_prime self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 # Due to the recommendations in [2], i.e. warming momentum schedule momentum_cache_t = self.beta_1 * ( 1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay))) momentum_cache_t_1 = self.beta_1 * ( 1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay))) m_schedule_new = self.m_schedule * momentum_cache_t m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1 self.updates.append((self.m_schedule, m_schedule_new)) shapes = [K.int_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): # the following equations given in [1] g_prime = g / (1. - m_schedule_new) m_t = self.beta_1 * m + (1. - self.beta_1) * g m_t_prime = m_t / (1. - m_schedule_next) v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g) v_t_prime = v_t / (1. - K.pow(self.beta_2, t)) m_t_bar = ( 1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / # pylint: disable=g-no-augmented-assignment (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * ( K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] else: vhats = [K.zeros(1) for _ in params] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) shapes = [K.int_shape(p) for p in params] accumulators = [K.zeros(shape) for shape in shapes] self.weights = accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): new_a = a + K.square(g) # update accumulator self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] self.weights = accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / # pylint: disable=g-no-augmented-assignment (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): # update accumulator new_a = self.rho * a + (1. - self.rho) * K.square(g) self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def __call__(self, w): norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)) desired = K.clip(norms, 0, self.max_value) w *= (desired / (K.epsilon() + norms)) return w
def __call__(self, w): return w / ( K.epsilon() + K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)))
def __call__(self, w): return w / (K.epsilon() + K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)))
def __call__(self, w): norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True)) desired = (self.rate * K.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms) w *= (desired / (K.epsilon() + norms)) return w
def mean_squared_error(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1)
def squared_hinge(y_true, y_pred): return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
def mean_squared_logarithmic_error(y_true, y_pred): first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.mean(K.square(first_log - second_log), axis=-1)