def Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Xception architecture. Optionally loads weights pre-trained on ImageNet. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow data format `(width, height, channels)`. You should set `image_data_format='channels_last'` in your Keras config located at ~/.keras/keras.json. Note that the default input image size for this model is 299x299. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') if K.image_data_format() != 'channels_last': logging.warning( 'The Xception model is only available for the ' 'input data format "channels_last" ' '(width, height, channels). ' 'However your settings specify the default ' 'data format "channels_first" (channels, width, height). ' 'You should set `image_data_format="channels_last"` in your Keras ' 'config located at ~/.keras/keras.json. ' 'The model being returned right now will expect inputs ' 'to follow the "channels_last" data format.') K.set_image_data_format('channels_last') old_data_format = 'channels_first' else: old_data_format = None # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=299, min_size=71, data_format=K.image_data_format(), require_flatten=False, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input) x = BatchNormalization(name='block1_conv1_bn')(x) x = Activation('relu', name='block1_conv1_act')(x) x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) x = BatchNormalization(name='block1_conv2_bn')(x) x = Activation('relu', name='block1_conv2_act')(x) residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x) x = BatchNormalization(name='block2_sepconv1_bn')(x) x = Activation('relu', name='block2_sepconv2_act')(x) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x) x = BatchNormalization(name='block2_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x) x = layers.add([x, residual]) residual = Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block3_sepconv1_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x) x = BatchNormalization(name='block3_sepconv1_bn')(x) x = Activation('relu', name='block3_sepconv2_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x) x = BatchNormalization(name='block3_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x) x = layers.add([x, residual]) residual = Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block4_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x) x = BatchNormalization(name='block4_sepconv1_bn')(x) x = Activation('relu', name='block4_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x) x = BatchNormalization(name='block4_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x) x = layers.add([x, residual]) for i in range(8): residual = x prefix = 'block' + str(i + 5) x = Activation('relu', name=prefix + '_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x) x = BatchNormalization(name=prefix + '_sepconv1_bn')(x) x = Activation('relu', name=prefix + '_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x) x = BatchNormalization(name=prefix + '_sepconv2_bn')(x) x = Activation('relu', name=prefix + '_sepconv3_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x) x = BatchNormalization(name=prefix + '_sepconv3_bn')(x) x = layers.add([x, residual]) residual = Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block13_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x) x = BatchNormalization(name='block13_sepconv1_bn')(x) x = Activation('relu', name='block13_sepconv2_act')(x) x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x) x = BatchNormalization(name='block13_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x) x = layers.add([x, residual]) x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x) x = BatchNormalization(name='block14_sepconv1_bn')(x) x = Activation('relu', name='block14_sepconv1_act')(x) x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x) x = BatchNormalization(name='block14_sepconv2_bn')(x) x = Activation('relu', name='block14_sepconv2_act')(x) if include_top: x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='xception') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'xception_weights_tf_dim_ordering_tf_kernels.h5', TF_WEIGHTS_PATH, cache_subdir='models', file_hash='0a58e3b7378bc2990ea3b43d5981f1f6') else: weights_path = get_file( 'xception_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='b0042744bf5b25fce3cb969f33bebb97') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) if old_data_format: K.set_image_data_format(old_data_format) return model
def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the VGG19 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format='channels_last'` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Arguments: include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 48. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = Flatten(name='flatten')(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dense(4096, activation='relu', name='fc2')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='vgg19') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', file_hash='cbe5617147190e668d6c5d5026f83318') else: weights_path = get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='253f8cb515780f3b799900260a226db6') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first': if include_top: maxpool = model.get_layer(name='block5_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1') layer_utils.convert_dense_weights_data_format( dense, shape, 'channels_first') elif weights is not None: model.load_weights(weights) return model
def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the ResNet50 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format='channels_last'` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or 'imagenet' (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 197. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = Conv2D( #64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input) 64, (7, 7), strides=(1, 1), padding='same', name='conv1')(img_input) x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') #x = AveragePooling2D((7, 7), name='avg_pool')(x) #x = AveragePooling2D((2, 2), name='avg_pool')(x) x = AveragePooling2D((4, 4), name='avg_pool')(x) if include_top: x = Flatten()(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='resnet50') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'resnet50_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', md5_hash='a7b3fe01876f51b976af0dea6bc144eb') else: weights_path = get_file( 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if include_top: maxpool = model.get_layer(name='avg_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1000') layer_utils.convert_dense_weights_data_format( dense, shape, 'channels_first') if K.image_data_format() == 'channels_first' and K.backend( ) == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') return model
def SqueezeNet(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the SqueezeNet architecture. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') input_shape = _obtain_input_shape(input_shape, default_size=227, min_size=48, data_format=K.image_data_format(), require_flatten=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = Convolution2D(64, (3, 3), strides=(2, 2), padding='valid', name='conv1')(img_input) x = Activation('relu', name='relu_conv1')(x) x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool1')(x) x = fire_module(x, fire_id=2, squeeze=16, expand=64) x = fire_module(x, fire_id=3, squeeze=16, expand=64) x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool3')(x) x = fire_module(x, fire_id=4, squeeze=32, expand=128) x = fire_module(x, fire_id=5, squeeze=32, expand=128) x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool5')(x) x = fire_module(x, fire_id=6, squeeze=48, expand=192) x = fire_module(x, fire_id=7, squeeze=48, expand=192) x = fire_module(x, fire_id=8, squeeze=64, expand=256) x = fire_module(x, fire_id=9, squeeze=64, expand=256) if include_top: # It's not obvious where to cut the network... # Could do the 8th or 9th layer... some work recommends cutting earlier layers. x = Dropout(0.5, name='drop9')(x) x = Convolution2D(classes, (1, 1), padding='valid', name='conv10')(x) x = Activation('relu', name='relu_conv10')(x) x = GlobalAveragePooling2D()(x) x = Activation('softmax', name='loss')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalAveragePooling2D()(x) elif pooling == None: pass else: raise ValueError("Unknown argument for 'ppoling'=" + pooling) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input model = Model(inputs, x, name='squeezenet') # load weights if weights == 'imagenet': if include_top: weights_path = '/tmp/squeezenet_weights_tf_dim_ordering_tf_kernels.h5' else: weights_path = get_file( 'squeezenet_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_dir='/tmp/') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_daata_format() == 'channels_first': pass return model
def InceptionResNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Inception-ResNet v2 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `"image_data_format": "channels_last"` in your Keras config at `~/.keras/keras.json`. The model and the weights are compatible with TensorFlow, Theano and CNTK backends. The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299, instead of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing function is different (i.e., do not use `imagenet_utils.preprocess_input()` with this model. Use `preprocess_input()` defined in this module instead). Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(299, 299, 3)` (with `'channels_last'` data format) or `(3, 299, 299)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `'avg'` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `'max'` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. Returns: A Keras `Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=299, min_size=139, data_format=K.image_data_format(), require_flatten=False, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Stem block: 35 x 35 x 192 x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid') x = conv2d_bn(x, 32, 3, padding='valid') x = conv2d_bn(x, 64, 3) x = MaxPooling2D(3, strides=2)(x) x = conv2d_bn(x, 80, 1, padding='valid') x = conv2d_bn(x, 192, 3, padding='valid') x = MaxPooling2D(3, strides=2)(x) # Mixed 5b (Inception-A block): 35 x 35 x 320 branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 x = Concatenate(axis=channel_axis, name='mixed_5b')(branches) # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320 for block_idx in range(1, 11): x = inception_resnet_block( x, scale=0.17, block_type='block35', block_idx=block_idx) # Mixed 6a (Reduction-A block): 17 x 17 x 1088 branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid') branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_6a')(branches) # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088 for block_idx in range(1, 21): x = inception_resnet_block( x, scale=0.1, block_type='block17', block_idx=block_idx) # Mixed 7a (Reduction-B block): 8 x 8 x 2080 branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid') branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_7a')(branches) # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080 for block_idx in range(1, 10): x = inception_resnet_block( x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block( x, scale=1., activation=None, block_type='block8', block_idx=10) # Final convolution block: 8 x 8 x 1536 x = conv2d_bn(x, 1536, 1, name='conv_7b') if include_top: # Classification block x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor` if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model model = Model(inputs, x, name='inception_resnet_v2') # Load weights if weights == 'imagenet': if include_top: fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5' weights_path = get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='e693bd0210a403b3192acc6073ad2e96') else: fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5' weights_path = get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='d19885ff4a710c122648d3b5c3b684e4') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def DenseNet(blocks, include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format='channels_last'` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with TensorFlow, Theano, and CNTK. The data format convention used by the model is the one specified in your Keras config file. Arguments: blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=221, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x) x = Activation('relu', name='conv1/relu')(x) x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = MaxPooling2D(3, strides=2, name='pool1')(x) x = dense_block(x, blocks[0], name='conv2') x = transition_block(x, 0.5, name='pool2') x = dense_block(x, blocks[1], name='conv3') x = transition_block(x, 0.5, name='pool3') x = dense_block(x, blocks[2], name='conv4') x = transition_block(x, 0.5, name='pool4') x = dense_block(x, blocks[3], name='conv5') x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x) if include_top: x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. if blocks == [6, 12, 24, 16]: model = Model(inputs, x, name='densenet121') elif blocks == [6, 12, 32, 32]: model = Model(inputs, x, name='densenet169') elif blocks == [6, 12, 48, 32]: model = Model(inputs, x, name='densenet201') else: model = Model(inputs, x, name='densenet') # Load weights. if weights == 'imagenet': if include_top: if blocks == [6, 12, 24, 16]: weights_path = get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels.h5', DENSENET121_WEIGHT_PATH, cache_subdir='models', file_hash='0962ca643bae20f9b6771cb844dca3b0') elif blocks == [6, 12, 32, 32]: weights_path = get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels.h5', DENSENET169_WEIGHT_PATH, cache_subdir='models', file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') elif blocks == [6, 12, 48, 32]: weights_path = get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels.h5', DENSENET201_WEIGHT_PATH, cache_subdir='models', file_hash='7bb75edd58cb43163be7e0005fbe95ef') else: if blocks == [6, 12, 24, 16]: weights_path = get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') elif blocks == [6, 12, 32, 32]: weights_path = get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='50662582284e4cf834ce40ab4dfa58c6') elif blocks == [6, 12, 48, 32]: weights_path = get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='1c2de60ee40562448dbac34a0737e798') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def get_model(nb_classes=10, add_peer=True): model = Sequential() model.add( Conv2D(64, (3, 3), padding='same', input_shape=(32, 32, 3), name='img')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3), padding='same', name='block1_conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')) model.add(Conv2D(128, (3, 3), padding='same', name='block2_conv1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(128, (3, 3), padding='same', name='block2_conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')) model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv3')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv4')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')) model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv3')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv4')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')) model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv3')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv4')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(4096)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(4096, name='fc2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(BatchNormalization()) model.add(Activation('softmax')) return model
def InceptionV3(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Inception v3 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)` (with `channels_last` data format) or `(3, 299, 299)` (with `channels_first` data format). It should have exactly 3 input channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=299, min_size=139, data_format=K.image_data_format(), require_flatten=False, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: img_input = Input(tensor=input_tensor, shape=input_shape) if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = 3 x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid') x = conv2d_bn(x, 32, 3, 3, padding='valid') x = conv2d_bn(x, 64, 3, 3) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv2d_bn(x, 80, 1, 1, padding='valid') x = conv2d_bn(x, 192, 3, 3, padding='valid') x = MaxPooling2D((3, 3), strides=(2, 2))(x) # mixed 0, 1, 2: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 32, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed0') # mixed 1: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed1') # mixed 2: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed2') # mixed 3: 17 x 17 x 768 branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid') branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn( branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3') # mixed 4: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 128, 1, 1) branch7x7 = conv2d_bn(branch7x7, 128, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 128, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed4') # mixed 5, 6: 17 x 17 x 768 for i in range(2): branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 160, 1, 1) branch7x7 = conv2d_bn(branch7x7, 160, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 160, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed' + str(5 + i)) # mixed 7: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(branch7x7, 192, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 192, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed7') # mixed 8: 8 x 8 x 1280 branch3x3 = conv2d_bn(x, 192, 1, 1) branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid') branch7x7x3 = conv2d_bn(x, 192, 1, 1) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1) branch7x7x3 = conv2d_bn( branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8') # mixed 9: 8 x 8 x 2048 for i in range(2): branch1x1 = conv2d_bn(x, 320, 1, 1) branch3x3 = conv2d_bn(x, 384, 1, 1) branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3) branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1) branch3x3 = layers.concatenate( [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i)) branch3x3dbl = conv2d_bn(x, 448, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3) branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3) branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1) branch3x3dbl = layers.concatenate( [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed' + str(9 + i)) if include_top: # Classification block x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='inception_v3') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', file_hash='9a0d58056eeedaa3f26cb7ebd46da564') else: weights_path = get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='bcbd6486424b2319ff4ef7d526e38f63') model.load_weights(weights_path) return model
def MaxPool2x2(name=None): return MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name=name)
def VGG16(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: img_input = Input(tensor=input_tensor, shape=input_shape) # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = Flatten(name='flatten')(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dropout(x, 0.5) x = Dense(4096, activation='relu', name='fc2')(x) x = Dropout(x, 0.5) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='vgg16') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'vgg16_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file( 'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) # Truncate and replace softmax layer for transfer learning model.layers.pop() model.outputs = [model.layers[-1].output] model.layers[-1].outbound_nodes = [] model.add(Dense(5089, activation='softmax', name='predictions')) # Learning rate is changed to 0.001 sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) """ if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first': if include_top: maxpool = model.get_layer(name='block5_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1') layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first') """ return model
def _reduction_a_cell(ip, p, filters, block_id=None): """Adds a Reduction cell for NASNet-A (Fig. 4 in the paper). Arguments: ip: Input tensor `x` p: Input tensor `p` filters: Number of output filters block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 with K.name_scope('reduction_A_block_%s' % block_id): p = _adjust_block(p, ip, filters, block_id) h = Activation('relu')(ip) h = Conv2D( filters, (1, 1), strides=(1, 1), padding='same', name='reduction_conv_1_%s' % block_id, use_bias=False, kernel_initializer='he_normal')( h) h = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='reduction_bn_1_%s' % block_id)( h) with K.name_scope('block_1'): x1_1 = _separable_conv_block( h, filters, (5, 5), strides=(2, 2), block_id='reduction_left1_%s' % block_id) x1_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id='reduction_1_%s' % block_id) x1 = add([x1_1, x1_2], name='reduction_add_1_%s' % block_id) with K.name_scope('block_2'): x2_1 = MaxPooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_left2_%s' % block_id)( h) x2_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id='reduction_right2_%s' % block_id) x2 = add([x2_1, x2_2], name='reduction_add_2_%s' % block_id) with K.name_scope('block_3'): x3_1 = AveragePooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_left3_%s' % block_id)( h) x3_2 = _separable_conv_block( p, filters, (5, 5), strides=(2, 2), block_id='reduction_right3_%s' % block_id) x3 = add([x3_1, x3_2], name='reduction_add3_%s' % block_id) with K.name_scope('block_4'): x4 = AveragePooling2D( (3, 3), strides=(1, 1), padding='same', name='reduction_left4_%s' % block_id)( x1) x4 = add([x2, x4]) with K.name_scope('block_5'): x5_1 = _separable_conv_block( x1, filters, (3, 3), block_id='reduction_left4_%s' % block_id) x5_2 = MaxPooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_right5_%s' % block_id)( h) x5 = add([x5_1, x5_2], name='reduction_add4_%s' % block_id) x = concatenate( [x2, x3, x4, x5], axis=channel_dim, name='reduction_concat_%s' % block_id) return x, ip
def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the ResNet50 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format='channels_last'` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 197. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = Conv2D(64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input) x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') """ if include_top: x = Flatten()(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) """ # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='resnet50') return model
plt.tight_layout() return plt for files in range (20,40,20): X = pickle.load(open("X"+str(files)+"bw.pickle", "rb")) y = pickle.load(open('y'+str(files)+'bw.pickle', 'rb')) X = X/255.0 model = Sequential() # filter = 20, kernel = 3, strides = 1, input_shape = (X.shape[1:]) model.add(Conv2D(32, 3, strides = 2, activation = 'relu', input_shape = (20, 20, 1))) model.add(MaxPooling2D(pool_size=(1,1))) # strides = x # filter = 20, kernel = 3, strides = 1 model.add(Conv2D(32, 3, strides = 2, activation = 'relu')) model.add(MaxPooling2D(pool_size=(1,1))) # strides = x model.add(Flatten()) model.add(Dense(2, activation = 'relu')) model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy', 'mae', 'mse'], optimizer='sgd') for l_r in range (1, 4, 1): l_r /= 10 for mom in range (1, 4, 1):