コード例 #1
0
ファイル: MRFNetwork.py プロジェクト: strategist922/SEEDBank
def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_dim_ordering() == "th":
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram
コード例 #2
0
def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_data_format() == "channels_first":
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram
コード例 #3
0
ファイル: StyleBank.py プロジェクト: igalav/TAU-DL-Project
 def gram_matrix(x):
     assert K.ndim(x) == 4
     grams = list()
     for i in range(self.Batch_Size):
         img = x[i, :, :, :]
         if K.image_data_format() == 'channels_first':
             features = K.batch_flatten(img)
         else:
             features = K.batch_flatten(
                 K.permute_dimensions(img, (2, 0, 1)))
         grams.append(K.dot(features, K.transpose(features)))
     gram = tf.keras.backend.stack(grams)
     return gram
コード例 #4
0
ファイル: loss.py プロジェクト: megabogus/neural_art
def gram_matrix(x):
    assert K.ndim(x) == 3
    if image_dim_ordering() == 'th':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))

    shape = K.shape(x)
    
    C, W, H = (shape[0],shape[1], shape[2])
    
    cf = K.reshape(features ,(C,-1))
    gram = K.dot(cf, K.transpose(cf)) /  K.cast(C*W*H,dtype='float32')

    return gram
コード例 #5
0
ファイル: training.py プロジェクト: Beomi/neural-style-keras
def gram_matrix(x, norm_by_channels=False):
    '''
    Returns the Gram matrix of the tensor x.
    '''
    if K.ndim(x) == 3:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
        shape = K.shape(x)
        C, H, W = shape[0], shape[1], shape[2]
        gram = K.dot(features, K.transpose(features))
    elif K.ndim(x) == 4:
        # Swap from (H, W, C) to (B, C, H, W)
        x = K.permute_dimensions(x, (0, 3, 1, 2))
        shape = K.shape(x)
        B, C, H, W = shape[0], shape[1], shape[2], shape[3]
        # Reshape as a batch of 2D matrices with vectorized channels
        features = K.reshape(x, K.stack([B, C, H * W]))
        # This is a batch of Gram matrices (B, C, C).
        gram = K.batch_dot(features, features, axes=2)
    else:
        raise ValueError(
            'The input tensor should be either a 3d (H, W, C) or 4d (B, H, W, C) tensor.'
        )
    # Normalize the Gram matrix
    if norm_by_channels:
        denominator = C * H * W  # Normalization from Johnson
    else:
        denominator = H * W  # Normalization from Google
    gram = gram / K.cast(denominator, x.dtype)

    return gram
コード例 #6
0
ファイル: utils.py プロジェクト: MathisBouverot/Style
def gram_matrix(x, y):
    """
        shift = -1
        features = tf.reshape(x, tf.shape(x)[ 1 : ])
        features = backend.batch_flatten(backend.permute_dimensions(features, (2, 0, 1)))
        return backend.dot(features + shift, backend.transpose(features + shift))
        """

    y_up = tf.image.resize_images(y, tf.shape(x)[1:3])

    shift = -1

    features_A = tf.reshape(x, tf.shape(x)[1:]) + shift
    features_A = backend.batch_flatten(
        backend.permute_dimensions(features_A, (2, 0, 1)))

    features_B = tf.reshape(y_up, tf.shape(y_up)[1:]) + shift
    features_B = backend.batch_flatten(
        backend.permute_dimensions(features_B, (2, 0, 1)))

    gram = backend.dot(features_A, backend.transpose(features_B))
    return gram
コード例 #7
0
    def call(self, inputs, **kwargs):
        if type(inputs) is list:
            assert len(inputs) == 2
            input, mask = inputs
            _, hei, wid, _, _ = input.get_shape()
            if self.resize_masks:
                mask = tf.image.resize_bicubic(mask, (hei.value, wid.value))
            mask = K.expand_dims(mask, -1)
            if input.get_shape().ndims == 3:
                masked = K.batch_flatten(mask * input)
            else:
                masked = mask * input

        else:
            if inputs.get_shape().ndims == 3:
                x = K.sqrt(K.sum(K.square(inputs), -1))
                mask = K.one_hot(indices=K.argmax(x, 1),
                                 num_classes=x.get_shape().as_list()[1])
                masked = K.batch_flatten(K.expand_dims(mask, -1) * inputs)
            else:
                masked = inputs

        return masked
コード例 #8
0
def gram_matrix(x):
    features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram
コード例 #9
0
def gram_matrix(x):
    assert K.ndim(x) == 3
    features = K.batch_flatten(x)
    gram = K.dot(features - 1, K.transpose(features - 1))
    return gram
コード例 #10
0
 def call(self, x, mask=None):
     x = x[:, :self.mydeletedim]
     return K.batch_flatten(x)