def model_iteration(model, data, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=False, initial_epoch=0, mode=ModeKeys.TRAIN, batch_size=None, steps_name='steps', **kwargs): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Arguments: model: Keras Model instance. data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. epochs: Number of times to iterate over the data. verbose: Verbosity mode, 0, 1 or 2. callbacks: List of callbacks to be called during training. validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. validation_steps: Total number of steps (batches of samples) before declaring validation finished. validation_freq: Only relevant if validation data is provided. Integer or `collections.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run). mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. batch_size: Integer batch size or None if unknown. Will only be used if `data` is in NumPy/Tensor format. steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. `steps` is accepted as an alias for `steps_per_epoch`. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ if 'steps' in kwargs: steps_per_epoch = kwargs['steps'] # Determine the number of steps per epoch and whether we should reset the # dataset at the end of each epoch. reset_dataset_after_each_epoch = False original_dataset = None is_dataset = isinstance(data, (dataset_ops.DatasetV2, dataset_ops.DatasetV1)) if is_dataset: original_dataset = data if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils.infer_steps_for_dataset( data, steps_per_epoch, epochs=epochs, steps_name=steps_name) # Convert to a format that supports `next(generator)`. generator, steps_per_epoch = convert_to_generator_like( data, steps_per_epoch=steps_per_epoch, batch_size=batch_size, epochs=epochs - initial_epoch, shuffle=shuffle) do_validation = validation_data is not None is_sequence = isinstance(generator, data_utils.Sequence) _validate_arguments(is_sequence, is_dataset, use_multiprocessing, workers, steps_per_epoch, validation_data, validation_steps, mode, kwargs) batch_function = _make_execution_function( model, mode, class_weight=class_weight) # Create the queue for the generator. enqueuer = None if not is_dataset: generator, enqueuer = _make_enqueued_generator( generator, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, shuffle=shuffle) num_samples_or_steps, use_steps = _get_num_samples_or_steps( data, steps_per_epoch) count_mode = 'steps' if use_steps else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, epochs=epochs, steps_per_epoch=steps_per_epoch, batch_size=batch_size, samples=num_samples_or_steps, verbose=0, # Handle ProgBar as part of Callbacks once hooks are ready. mode=mode) # TODO(omalleyt): Handle ProgBar as part of Callbacks once hooks are ready. progbar = training_utils.get_progbar(model, count_mode) progbar.params = callbacks.params progbar.params['verbose'] = verbose if mode == ModeKeys.PREDICT: aggregator = training_utils.OutputsAggregator(True, steps_per_epoch) else: aggregator = training_utils.MetricsAggregator(True, steps_per_epoch) should_set_learning_phase = context.executing_eagerly() and model.run_eagerly if should_set_learning_phase: old_learning_phase = backend.learning_phase() backend.set_eager_learning_phase(1 if mode == ModeKeys.TRAIN else 0) callbacks.model.stop_training = False callbacks._call_begin_hook(mode) progbar.on_train_begin() initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode) for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch. model.reset_metrics() epoch_logs = {} if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) progbar.on_epoch_begin(epoch, epoch_logs) if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_data = _get_next_batch(generator, mode) if batch_data is None: if is_dataset: # The dataset passed by the user ran out of batches. # Now we know the cardinality of the dataset. # If steps_per_epoch was specified, then running out of data is # unexpected, so we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( 'Your dataset ran out of data; interrupting training. ' 'Make sure that your dataset can generate at least ' '`%s * epochs` batches (in this case, %d batches). ' 'You may need to use the repeat() function when ' 'building your dataset.' % (steps_name, steps_per_epoch * epochs)) elif step > 0: steps_per_epoch = step aggregator.num_samples_or_steps = steps_per_epoch if mode == ModeKeys.TRAIN: progbar.params['steps'] = steps_per_epoch progbar.progbar.target = steps_per_epoch else: # We ran out of batches while the user passed an iterator (legacy). callbacks.model.stop_training = True logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your iterator ' 'can generate at least `%s * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % (steps_name, steps_per_epoch * epochs)) break # `batch_size` used for validation data if validation # data is NumPy/EagerTensors. batch_size = int(nest.flatten(batch_data)[0].shape[0]) # Callbacks batch begin. batch_logs = {'batch': step, 'size': batch_size} callbacks._call_batch_hook(mode, 'begin', step, batch_logs) progbar.on_batch_begin(step, batch_logs) is_deferred = not model._is_compiled batch_outs = batch_function(*batch_data) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: aggregator.create(batch_outs) if is_deferred: # Set callbacks params. We do this here when model is compiled only # in the first iteration of this loop (deferred build scenario). cbks.set_callback_parameters( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, verbose=verbose, mode=mode) progbar.params = callbacks.params progbar.params['verbose'] = verbose # Aggregate results. aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', step, batch_logs) progbar.on_batch_end(step, batch_logs) step += 1 if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = cbks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every epoch during training. if (do_validation and training_utils.should_run_validation(validation_freq, epoch) and not callbacks.model.stop_training): val_results = model_iteration( model, validation_data, steps_per_epoch=validation_steps, batch_size=batch_size, class_weight=class_weight, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, callbacks=callbacks, verbose=0, mode=ModeKeys.TEST, steps_name='validation_steps') if not isinstance(val_results, list): val_results = [val_results] epoch_logs = cbks.make_logs( model, epoch_logs, val_results, mode, prefix='val_') if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) progbar.on_epoch_end(epoch, epoch_logs) # Recreate dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: generator = dataset_ops.make_one_shot_iterator(original_dataset) callbacks._call_end_hook(mode) if enqueuer is not None: enqueuer.stop() if should_set_learning_phase: backend.set_eager_learning_phase(old_learning_phase) if mode == ModeKeys.TRAIN: return model.history return results
def model_iteration(model, data, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=False, initial_epoch=0, mode=ModeKeys.TRAIN, batch_size=None, steps_name='steps', **kwargs): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Arguments: model: Keras Model instance. data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. epochs: Number of times to iterate over the data. verbose: Verbosity mode, 0, 1 or 2. callbacks: List of callbacks to be called during training. validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. validation_steps: Total number of steps (batches of samples) before declaring validation finished. validation_freq: Only relevant if validation data is provided. Integer or `collections.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run). mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. batch_size: Integer batch size or None if unknown. Will only be used if `data` is in NumPy/Tensor format. steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. `steps` is accepted as an alias for `steps_per_epoch`. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ if 'steps' in kwargs: steps_per_epoch = kwargs['steps'] # Determine the number of steps per epoch and whether we should reset the # dataset at the end of each epoch. reset_dataset_after_each_epoch = False original_dataset = None is_dataset = isinstance(data, (dataset_ops.DatasetV2, dataset_ops.DatasetV1)) if is_dataset: original_dataset = data if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils.infer_steps_for_dataset( data, steps_per_epoch, epochs=epochs, steps_name=steps_name) # Convert to a format that supports `next(generator)`. generator, steps_per_epoch = convert_to_generator_like( data, steps_per_epoch=steps_per_epoch, batch_size=batch_size, epochs=epochs - initial_epoch, shuffle=shuffle) do_validation = validation_data is not None is_sequence = isinstance(generator, data_utils.Sequence) _validate_arguments(is_sequence, is_dataset, use_multiprocessing, workers, steps_per_epoch, validation_data, validation_steps, mode, kwargs) batch_function = _make_execution_function(model, mode, class_weight=class_weight) # Create the queue for the generator. enqueuer = None if not is_dataset: generator, enqueuer = _make_enqueued_generator( generator, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, shuffle=shuffle) num_samples_or_steps, use_steps = _get_num_samples_or_steps( data, steps_per_epoch) count_mode = 'steps' if use_steps else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, epochs=epochs, steps_per_epoch=steps_per_epoch, batch_size=batch_size, samples=num_samples_or_steps, verbose=0, # Handle ProgBar as part of Callbacks once hooks are ready. mode=mode) # TODO(omalleyt): Handle ProgBar as part of Callbacks once hooks are ready. progbar = training_utils.get_progbar(model, count_mode) progbar.params = callbacks.params progbar.params['verbose'] = verbose if mode == ModeKeys.PREDICT: aggregator = training_utils.OutputsAggregator(True, steps_per_epoch) else: aggregator = training_utils.MetricsAggregator(True, steps_per_epoch) should_set_learning_phase = context.executing_eagerly( ) and model.run_eagerly if should_set_learning_phase: old_learning_phase = backend.learning_phase() backend.set_eager_learning_phase(1 if mode == ModeKeys.TRAIN else 0) callbacks.model.stop_training = False callbacks._call_begin_hook(mode) progbar.on_train_begin() for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch. model.reset_metrics() epoch_logs = {} if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) progbar.on_epoch_begin(epoch, epoch_logs) if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_data = _get_next_batch(generator, mode) if batch_data is None: if is_dataset: # The dataset passed by the user ran out of batches. # Now we know the cardinality of the dataset. # If steps_per_epoch was specified, then running out of data is # unexpected, so we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( 'Your dataset ran out of data; interrupting training. ' 'Make sure that your dataset can generate at least ' '`%s * epochs` batches (in this case, %d batches). ' 'You may need to use the repeat() function when ' 'building your dataset.' % (steps_name, steps_per_epoch * epochs)) elif step > 0: steps_per_epoch = step aggregator.num_samples_or_steps = steps_per_epoch progbar.params['steps'] = steps_per_epoch progbar.progbar.target = steps_per_epoch else: # We ran out of batches while the user passed an iterator (legacy). callbacks.model.stop_training = True logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your iterator ' 'can generate at least `%s * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % (steps_name, steps_per_epoch * epochs)) break # `batch_size` used for validation data if validation # data is NumPy/EagerTensors. batch_size = int(nest.flatten(batch_data)[0].shape[0]) # Callbacks batch begin. batch_logs = {'batch': step, 'size': batch_size} callbacks._call_batch_hook(mode, 'begin', step, batch_logs) progbar.on_batch_begin(step, batch_logs) is_deferred = not model._is_compiled batch_outs = batch_function(*batch_data) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: aggregator.create(batch_outs) if is_deferred: # Set callbacks params. We do this here when model is compiled only # in the first iteration of this loop (deferred build scenario). cbks.set_callback_parameters( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, verbose=verbose, mode=mode) progbar.params = callbacks.params progbar.params['verbose'] = verbose # Aggregate results. aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', step, batch_logs) progbar.on_batch_end(step, batch_logs) step += 1 if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = cbks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every epoch during training. if (do_validation and training_utils.should_run_validation( validation_freq, epoch) and not callbacks.model.stop_training): val_results = model_iteration( model, validation_data, steps_per_epoch=validation_steps, batch_size=batch_size, class_weight=class_weight, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, callbacks=callbacks, verbose=0, mode=ModeKeys.TEST, steps_name='validation_steps') if not isinstance(val_results, list): val_results = [val_results] epoch_logs = cbks.make_logs(model, epoch_logs, val_results, mode, prefix='val_') if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) progbar.on_epoch_end(epoch, epoch_logs) # Recreate dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: generator = dataset_ops.make_one_shot_iterator(original_dataset) callbacks._call_end_hook(mode) if enqueuer is not None: enqueuer.stop() if should_set_learning_phase: backend.set_eager_learning_phase(old_learning_phase) if mode == ModeKeys.TRAIN: return model.history return results