コード例 #1
0
ファイル: base.py プロジェクト: AnishShah/tensorflow
 def _make_unique_name(self, name_uid_map=None, avoid_names=None,
                       namespace='', zero_based=False):
   base_name = base_layer.to_snake_case(self.__class__.__name__)
   name = base_layer.unique_layer_name(base_name,
                                       name_uid_map=name_uid_map,
                                       avoid_names=avoid_names,
                                       namespace=namespace,
                                       zero_based=zero_based)
   return (name, base_name)
コード例 #2
0
ファイル: base.py プロジェクト: neuroph12/CNNDDDD
 def _make_unique_name(self, name_uid_map=None, avoid_names=None,
                       namespace='', zero_based=False):
   base_name = base_layer.to_snake_case(self.__class__.__name__)
   name = base_layer.unique_layer_name(base_name,
                                       name_uid_map=name_uid_map,
                                       avoid_names=avoid_names,
                                       namespace=namespace,
                                       zero_based=zero_based)
   return (name, base_name)
コード例 #3
0
def conv2d(inputs,
           filters,
           kernel_size,
           strides,
           padding,
           name="conv2d",
           rate=1,
           scope=None,
           normalizer_fn=None,
           return_preact=False,
           **args):

    activation = False
    if "activation_fn" in args:
        activation_fn = args["activation_fn"]
        del args["activation_fn"]
        activation = True

    if "use_bias" in args and args["use_bias"]:
        assert not args["use_bias"]
        del args["use_bias"]

    if "kernel_initializer" in args:
        del args["kernel_initializer"]

    if "data_format" in args:
        args["data_format"] = "NCHW" if args[
            "data_format"] == "channels_first" else "NHWC"
    else:
        args["data_format"] = "NHWC"

    # kernel
    if not isinstance(kernel_size, list):
        kernel_size = [kernel_size] * 2

    # data_format dependent kernel_size, strides, dilations
    if args["data_format"] == "NHWC":
        num_channels = getshape(inputs)[-1]
        if not isinstance(strides, list):
            strides = [1] + [strides] * 2 + [1]
        dilations = [1, rate, rate, 1]
    else:
        num_channels = getshape(inputs)[0]
        if not isinstance(strides, list):
            strides = [1, 1] + [strides] * 2
        dilations = [1, 1] + [rate, rate]

    # get filter
    with tf.variable_scope(unique_layer_name(name, zero_based=True)) as vc:
        weight_s, weight_p = variableFromSettings(kernel_size +
                                                  [num_channels, filters])

        # conv with sampled filter
        conv_args = {
            "input": inputs,
            "strides": strides,
            "padding": padding,
            "dilations": dilations,
            **args
        }
        conv = tf.nn.conv2d(filter=weight_s, name=name, **conv_args)

    if normalizer_fn is not None:
        conv = normalizer_fn(conv, name="bn")

    # check if an activation needs some work beforehand
    if activation and activation_fn is not None:
        if "activation_prepare" in GLOBAL:
            preact = GLOBAL["activation_prepare"](weight_s, weight_p, inputs,
                                                  conv, conv_args)
            if return_preact:
                return preact

        conv = activation_fn(conv)

    # just return that
    return conv