def batch_predict_loop(model, inputs, batch_size, verbose=0): """Predict function for eager execution when input is arrays or tensors. Arguments: model: Instance of `Model`. inputs: List of input arrays. batch_size: Integer batch size. verbose: Verbosity mode. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ outs = [] num_samples = training_utils.check_num_samples(inputs, batch_size) if verbose == 1: progbar = generic_utils.Progbar(target=num_samples) batches = generic_utils.make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] inputs_batch = slice_arrays(inputs, batch_ids) inputs_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in inputs_batch ] if len(inputs_batch) == 1: if model._expects_training_arg: batch_outs = model.call(inputs_batch[0], training=False) else: batch_outs = model.call(inputs_batch[0]) else: if model._expects_training_arg: batch_outs = model.call(inputs_batch, training=False) else: batch_outs = model.call(inputs_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: dims = batch_out.shape[1:].dims dims_list = [d.value for d in dims] shape = (num_samples, ) + tuple(dims_list) outs.append( np.zeros(shape, dtype=batch_out.dtype.as_numpy_dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs
def batch_predict_loop(model, inputs, batch_size, verbose=0): """Predict function for eager execution when input is arrays or tensors. Arguments: model: Instance of `Model`. inputs: List of input arrays. batch_size: Integer batch size. verbose: Verbosity mode. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ outs = [] num_samples = training_utils.check_num_samples(inputs, batch_size) if verbose == 1: progbar = generic_utils.Progbar(target=num_samples) batches = generic_utils.make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] inputs_batch = slice_arrays(inputs, batch_ids) inputs_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in inputs_batch ] if len(inputs_batch) == 1: if model._expects_training_arg: batch_outs = model.call(inputs_batch[0], training=False) else: batch_outs = model.call(inputs_batch[0]) else: if model._expects_training_arg: batch_outs = model.call(inputs_batch, training=False) else: batch_outs = model.call(inputs_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: dims = batch_out.shape[1:].dims dims_list = [d.value for d in dims] shape = (num_samples,) + tuple(dims_list) outs.append(np.zeros(shape, dtype=batch_out.dtype.as_numpy_dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs
def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch): """Returns total number of samples (when training in batch mode) or steps.""" if steps_per_epoch: return steps_per_epoch return training_utils.check_num_samples(ins, batch_size, steps_per_epoch, 'steps_per_epoch')
def fit_loop(model, inputs, targets, sample_weights=None, batch_size=None, epochs=100, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, callback_metrics=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Abstract fit function for arrays of data. Arguments: model: Keras Model instance. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training val_inputs: List of input arrays. val_targets: List of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch callback_metrics: List of strings, the display names of the metrics passed to the callbacks. They should be the concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. Returns: `History` object. Raises: ValueError: in case of invalid arguments. """ model._make_train_function() f = model.train_function sample_weights = sample_weights or [] val_sample_weights = val_sample_weights or [] if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [1] if val_inputs: val_ins = val_inputs + val_targets + val_sample_weights + [1] else: ins = inputs + targets + sample_weights if val_inputs: val_ins = val_inputs + val_targets + val_sample_weights if not val_inputs: val_ins = [] do_validation = False if val_inputs: do_validation = True if (steps_per_epoch is None and verbose and inputs and hasattr(inputs[0], 'shape') and hasattr(val_inputs[0], 'shape')): print('Train on %d samples, validate on %d samples' % (inputs[0].shape[0], val_inputs[0].shape[0])) if validation_steps: do_validation = True if steps_per_epoch is None: raise ValueError('Can only use `validation_steps` ' 'when doing step-wise ' 'training, i.e. `steps_per_epoch` ' 'must be set.') out_labels = model.metrics_names if do_validation: callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels ] else: callback_metrics = copy.copy(out_labels) num_train_samples = training_utils.check_num_samples( ins, batch_size, steps_per_epoch, 'steps_per_epoch') if num_train_samples is not None: index_array = np.arange(num_train_samples) model.history = cbks.History() all_callbacks = [ cbks.BaseLogger(stateful_metrics=model.stateful_metric_names) ] if verbose: if steps_per_epoch is not None: count_mode = 'steps' else: count_mode = 'samples' all_callbacks.append( cbks.ProgbarLogger(count_mode, stateful_metrics=model.stateful_metric_names)) all_callbacks += (callbacks or []) + [model.history] callbacks = cbks.CallbackList(all_callbacks) out_labels = out_labels or [] # it's possible to callback a different model than self # (used by Sequential models) if hasattr(model, 'callback_model') and model.callback_model: callback_model = model.callback_model else: callback_model = model callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'steps': steps_per_epoch, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: cbk.validation_data = val_ins # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse( ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) for epoch in range(initial_epoch, epochs): # Reset stateful metrics for m in model.stateful_metric_functions: m.reset_states() # Update callbacks callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: for step_index in range(steps_per_epoch): batch_logs = {} batch_logs['batch'] = step_index batch_logs['size'] = 1 callbacks.on_batch_begin(step_index, batch_logs) try: outs = f(ins) except errors.OutOfRangeError: logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your dataset ' 'can generate at least `steps_per_epoch * epochs` ' 'batches (in this case, %d batches).' % steps_per_epoch * epochs) break if not isinstance(outs, list): outs = [outs] for l, o in zip(out_labels, outs): batch_logs[l] = o callbacks.on_batch_end(step_index, batch_logs) if callback_model.stop_training: break if do_validation: val_outs = test_loop(model, val_inputs, val_targets, sample_weights=val_sample_weights, batch_size=batch_size, steps=validation_steps, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(out_labels, val_outs): epoch_logs['val_' + l] = o else: if shuffle == 'batch': index_array = training_utils.batch_shuffle( index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_train_samples, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] try: if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') batch_logs = {} batch_logs['batch'] = batch_index batch_logs['size'] = len(batch_ids) callbacks.on_batch_begin(batch_index, batch_logs) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() outs = f(ins_batch) if not isinstance(outs, list): outs = [outs] for l, o in zip(out_labels, outs): batch_logs[l] = o callbacks.on_batch_end(batch_index, batch_logs) if callback_model.stop_training: break if batch_index == len(batches) - 1: # Last batch. if do_validation: val_outs = test_loop(model, val_inputs, val_targets, sample_weights=val_sample_weights, batch_size=batch_size, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(out_labels, val_outs): epoch_logs['val_' + l] = o callbacks.on_epoch_end(epoch, epoch_logs) if callback_model.stop_training: break callbacks.on_train_end() return model.history
def test_loop(model, inputs, targets, sample_weights=None, batch_size=None, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: integer batch size or `None`. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ model._make_test_function() f = model.test_function sample_weights = sample_weights or [] if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [0] else: ins = inputs + targets + sample_weights if hasattr(model, 'metrics'): for m in model.stateful_metric_functions: m.reset_states() stateful_metric_indices = [ i for i, name in enumerate(model.metrics_names) if str(name) in model.stateful_metric_names ] else: stateful_metric_indices = [] num_samples = training_utils.check_num_samples(ins, batch_size, steps, 'steps') outs = [] if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse( ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) if steps is not None: for step in range(steps): batch_outs = f(ins) if isinstance(batch_outs, list): if step == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out else: if step == 0: outs.append(0.) outs[0] += batch_outs if verbose == 1: progbar.update(step + 1) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= steps else: batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if isinstance(batch_outs, list): if batch_index == 0: for batch_out in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs
def predict_loop(model, inputs, batch_size=32, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: list of tensors to be fed to `f`. batch_size: integer batch size. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ model._make_predict_function() f = model.predict_function if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + [0] else: ins = inputs num_samples = training_utils.check_num_samples(inputs, batch_size, steps, 'steps') if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) indices_for_conversion_to_dense = [] for i in range(len(model._feed_inputs)): if (issparse is not None and issparse(inputs[i]) and not K.is_sparse(model._feed_inputs[i])): indices_for_conversion_to_dense.append(i) if steps is not None: # Step-based predictions. # Since we do not know how many samples # we will see, we cannot pre-allocate # the returned Numpy arrays. # Instead, we store one array per batch seen # and concatenate them upon returning. unconcatenated_outs = [] for step in range(steps): batch_outs = f(ins) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: for batch_out in batch_outs: unconcatenated_outs.append([]) for i, batch_out in enumerate(batch_outs): unconcatenated_outs[i].append(batch_out) if verbose == 1: progbar.update(step + 1) if len(unconcatenated_outs) == 1: return np.concatenate(unconcatenated_outs[0], axis=0) return [ np.concatenate(unconcatenated_outs[i], axis=0) for i in range(len(unconcatenated_outs)) ] else: # Sample-based predictions. outs = [] batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: shape = (num_samples, ) + batch_out.shape[1:] outs.append(np.zeros(shape, dtype=batch_out.dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs
def fit_loop(model, inputs, targets, sample_weights=None, batch_size=None, epochs=100, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Abstract fit function for arrays of data. Arguments: model: Keras Model instance. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training val_inputs: List of input arrays. val_targets: List of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. Returns: `History` object. Raises: ValueError: in case of invalid arguments. """ model._make_train_function() f = model.train_function sample_weights = sample_weights or [] val_sample_weights = val_sample_weights or [] if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [1] else: ins = inputs + targets + sample_weights do_validation = False if val_inputs: do_validation = True if (steps_per_epoch is None and verbose and inputs and hasattr(inputs[0], 'shape') and hasattr(val_inputs[0], 'shape')): print('Train on %d samples, validate on %d samples' % (inputs[0].shape[0], val_inputs[0].shape[0])) if validation_steps: do_validation = True if steps_per_epoch is None: raise ValueError('Can only use `validation_steps` ' 'when doing step-wise ' 'training, i.e. `steps_per_epoch` ' 'must be set.') num_train_samples = training_utils.check_num_samples( ins, batch_size, steps_per_epoch, 'steps_per_epoch') count_mode = 'steps' if steps_per_epoch else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_train_samples, validation_steps=validation_steps, verbose=verbose, count_mode=count_mode) if num_train_samples is not None: index_array = np.arange(num_train_samples) # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse(ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) callbacks.on_train_begin() for epoch in range(initial_epoch, epochs): # Reset stateful metrics for m in model.stateful_metric_functions: m.reset_states() # Update callbacks callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: # Step-wise fit loop. for step_index in range(steps_per_epoch): batch_logs = {'batch': step_index, 'size': 1} callbacks.on_batch_begin(step_index, batch_logs) try: outs = f(ins) except errors.OutOfRangeError: logging.warning('Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your dataset ' 'can generate at least `steps_per_epoch * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % steps_per_epoch * epochs) break if not isinstance(outs, list): outs = [outs] for l, o in zip(model.metrics_names, outs): batch_logs[l] = o callbacks.on_batch_end(step_index, batch_logs) if callbacks.model.stop_training: break if do_validation: val_outs = test_loop( model, val_inputs, val_targets, sample_weights=val_sample_weights, steps=validation_steps, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(model.metrics_names, val_outs): epoch_logs['val_' + l] = o else: # Sample-wise fit loop. if shuffle == 'batch': index_array = training_utils.batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_train_samples, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] try: if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') batch_logs = {} batch_logs['batch'] = batch_index batch_logs['size'] = len(batch_ids) callbacks.on_batch_begin(batch_index, batch_logs) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() outs = f(ins_batch) if not isinstance(outs, list): outs = [outs] for l, o in zip(model.metrics_names, outs): batch_logs[l] = o callbacks.on_batch_end(batch_index, batch_logs) if callbacks.model.stop_training: break if batch_index == len(batches) - 1: # Last batch. if do_validation: val_outs = test_loop( model, val_inputs, val_targets, sample_weights=val_sample_weights, batch_size=batch_size, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(model.metrics_names, val_outs): epoch_logs['val_' + l] = o callbacks.on_epoch_end(epoch, epoch_logs) if callbacks.model.stop_training: break callbacks.on_train_end() return model.history
def test_loop(model, inputs, targets, sample_weights=None, batch_size=None, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: integer batch size or `None`. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ model._make_test_function() f = model.test_function sample_weights = sample_weights or [] if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [0] else: ins = inputs + targets + sample_weights if hasattr(model, 'metrics'): for m in model.stateful_metric_functions: m.reset_states() stateful_metric_indices = [ i for i, name in enumerate(model.metrics_names) if str(name) in model.stateful_metric_names ] else: stateful_metric_indices = [] num_samples = training_utils.check_num_samples( ins, batch_size, steps, 'steps') outs = [] if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse(ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) if steps is not None: for step in range(steps): batch_outs = f(ins) if isinstance(batch_outs, list): if step == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out else: if step == 0: outs.append(0.) outs[0] += batch_outs if verbose == 1: progbar.update(step + 1) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= steps else: batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if isinstance(batch_outs, list): if batch_index == 0: outs.extend([0.] * len(batch_outs)) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs
def predict_loop(model, inputs, batch_size=32, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: list of tensors to be fed to `f`. batch_size: integer batch size. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ model._make_predict_function() f = model.predict_function if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + [0] else: ins = inputs num_samples = training_utils.check_num_samples( inputs, batch_size, steps, 'steps') if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) indices_for_conversion_to_dense = [] for i in range(len(model._feed_inputs)): if (issparse is not None and issparse(inputs[i]) and not K.is_sparse(model._feed_inputs[i])): indices_for_conversion_to_dense.append(i) if steps is not None: # Step-based predictions. # Since we do not know how many samples # we will see, we cannot pre-allocate # the returned Numpy arrays. # Instead, we store one array per batch seen # and concatenate them upon returning. unconcatenated_outs = [] for step in range(steps): batch_outs = f(ins) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: for batch_out in batch_outs: unconcatenated_outs.append([]) for i, batch_out in enumerate(batch_outs): unconcatenated_outs[i].append(batch_out) if verbose == 1: progbar.update(step + 1) if len(unconcatenated_outs) == 1: return np.concatenate(unconcatenated_outs[0], axis=0) return [ np.concatenate(unconcatenated_outs[i], axis=0) for i in range(len(unconcatenated_outs)) ] else: # Sample-based predictions. outs = [] batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: shape = (num_samples,) + batch_out.shape[1:] outs.append(np.zeros(shape, dtype=batch_out.dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs
def fit_loop(model, inputs, targets, sample_weights=None, class_weight=None, val_inputs=None, val_targets=None, val_sample_weights=None, batch_size=None, epochs=1, verbose=1, callbacks=None, shuffle=True, callback_metrics=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Fit function for eager execution. Arguments: model: Instance of the model that is being executed in Eager mode. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. class_weight: Optional class-weight array to weight the importance of samples in `inputs` based on the class they belong to, as conveyed by `targets`. val_inputs: Input data for validation. val_targets: Target data for validation. val_sample_weights: Sample weight data for validation. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training shuffle: Whether to shuffle the data at the beginning of each epoch callback_metrics: List of strings, the display names of the metrics passed to the callbacks. They should be the concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with default value of `None`. Returns: `History` object. Raises: ValueError: In case of invalid argument values. """ # Required for eager execution with backend.learning_phase_scope(1): do_validation = False if val_inputs: do_validation = True if (steps_per_epoch is None and verbose and inputs and hasattr(inputs[0], 'shape') and hasattr(val_inputs[0], 'shape')): print('Train on %d samples, validate on %d samples' % (inputs[0].shape[0], val_inputs[0].shape[0])) num_train_samples = None out_labels = None if steps_per_epoch is None or model._is_compiled: out_labels = model.metrics_names if do_validation: callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels ] else: callback_metrics = copy.copy(out_labels) if steps_per_epoch is None: if sample_weights: feed_data = inputs + targets + sample_weights else: feed_data = inputs + targets num_train_samples = training_utils.check_num_samples( feed_data, batch_size=batch_size, steps=steps_per_epoch, steps_name='steps_per_epoch') if num_train_samples is not None: index_array = np.arange(num_train_samples) model.history = cbks.History() callbacks = [cbks.BaseLogger()] + (callbacks or []) + [model.history] if verbose: if steps_per_epoch is not None: count_mode = 'steps' else: count_mode = 'samples' callbacks += [cbks.ProgbarLogger(count_mode)] callbacks = cbks.CallbackList(callbacks) # it's possible to callback a different model than self # (used by Sequential models) if hasattr(model, 'callback_model') and model.callback_model: callback_model = model.callback_model else: callback_model = model callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'steps': steps_per_epoch, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: if not val_inputs: cbk.validation_data = [] elif isinstance(val_inputs, iterator_ops.EagerIterator): cbk.validation_data = val_inputs elif val_sample_weights: cbk.validation_data = val_inputs + val_targets + val_sample_weights else: cbk.validation_data = val_inputs + val_targets for epoch in range(initial_epoch, epochs): callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: iterator_fit_loop( model, inputs, class_weight, steps_per_epoch=steps_per_epoch, callback_model=callback_model, out_labels=out_labels, epoch_logs=epoch_logs, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, epochs=epochs, verbose=verbose, callbacks=callbacks, callback_metrics=callback_metrics, validation_steps=validation_steps, do_validation=do_validation) else: batch_fit_loop( model, inputs, targets, epoch_logs=epoch_logs, index_array=index_array, out_labels=out_labels, callback_model=callback_model, batch_size=batch_size, sample_weights=sample_weights, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, callbacks=callbacks, shuffle=shuffle, num_train_samples=num_train_samples, do_validation=do_validation) callbacks.on_epoch_end(epoch, epoch_logs) if callback_model.stop_training: break callbacks.on_train_end() return model.history
def batch_test_loop(model, inputs, targets, batch_size, sample_weights=None, verbose=0): """Test function for eager execution when input is given as arrays or tensors. Arguments: model: Model instance that is being evaluated in Eager mode. inputs: List of input arrays. targets: List of target arrays. batch_size: Integer batch size. sample_weights: Optional list of sample weight arrays. verbose: Verbosity mode. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ outs = [] feed_data = inputs + targets if sample_weights: feed_data += sample_weights num_samples = training_utils.check_num_samples( feed_data, batch_size=batch_size) if verbose == 1: progbar = generic_utils.Progbar(target=num_samples) batches = generic_utils.make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] inputs_batch = slice_arrays(inputs, batch_ids) targets_batch = slice_arrays(targets, batch_ids) if sample_weights: sample_weights_batch = slice_arrays(sample_weights, batch_ids) else: sample_weights_batch = None inputs_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in inputs_batch ] targets_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in targets_batch ] if sample_weights: sample_weights_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) if val is not None else None for val in sample_weights_batch ] loss_outs, loss, loss_metrics = _model_loss( model, inputs_batch, targets_batch, sample_weights=sample_weights_batch, training=False) metrics_results = _eager_metrics_fn(model, loss_outs, targets_batch) batch_outs = [] for _, v in zip(model.metrics_names, [backend.mean(loss)] + loss_metrics + metrics_results): batch_outs.append(tensor_util.constant_value(v)) if isinstance(batch_outs, list): if batch_index == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs
def fit_loop(model, inputs, targets, sample_weights=None, class_weight=None, val_inputs=None, val_targets=None, val_sample_weights=None, batch_size=None, epochs=1, verbose=1, callbacks=None, shuffle=True, callback_metrics=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Fit function for eager execution. Arguments: model: Instance of the model that is being executed in Eager mode. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. class_weight: Optional class-weight array to weight the importance of samples in `inputs` based on the class they belong to, as conveyed by `targets`. val_inputs: Input data for validation. val_targets: Target data for validation. val_sample_weights: Sample weight data for validation. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training shuffle: Whether to shuffle the data at the beginning of each epoch callback_metrics: List of strings, the display names of the metrics passed to the callbacks. They should be the concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with default value of `None`. Returns: `History` object. Raises: ValueError: In case of invalid argument values. """ # Required for eager execution with backend.learning_phase_scope(1): do_validation = False if val_inputs: do_validation = True if (steps_per_epoch is None and verbose and inputs and hasattr(inputs[0], 'shape') and hasattr(val_inputs[0], 'shape')): print('Train on %d samples, validate on %d samples' % (inputs[0].shape[0], val_inputs[0].shape[0])) num_train_samples = None out_labels = None if steps_per_epoch is None or model._is_compiled: out_labels = model.metrics_names if do_validation: callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels ] else: callback_metrics = copy.copy(out_labels) if steps_per_epoch is None: if sample_weights: feed_data = inputs + targets + sample_weights else: feed_data = inputs + targets num_train_samples = training_utils.check_num_samples( feed_data, batch_size=batch_size, steps=steps_per_epoch, steps_name='steps_per_epoch') if num_train_samples is not None: index_array = np.arange(num_train_samples) model.history = cbks.History() callbacks = [cbks.BaseLogger()] + (callbacks or []) + [model.history] if verbose: if steps_per_epoch is not None: count_mode = 'steps' else: count_mode = 'samples' callbacks += [cbks.ProgbarLogger(count_mode)] callbacks = cbks.CallbackList(callbacks) # it's possible to callback a different model than self # (used by Sequential models) if hasattr(model, 'callback_model') and model.callback_model: callback_model = model.callback_model else: callback_model = model callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'steps': steps_per_epoch, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: if not val_inputs: cbk.validation_data = [] elif isinstance(val_inputs, iterator_ops.EagerIterator): cbk.validation_data = val_inputs elif val_sample_weights: cbk.validation_data = val_inputs + val_targets + val_sample_weights else: cbk.validation_data = val_inputs + val_targets for epoch in range(initial_epoch, epochs): callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: iterator_fit_loop(model, inputs, class_weight, steps_per_epoch=steps_per_epoch, callback_model=callback_model, out_labels=out_labels, epoch_logs=epoch_logs, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, epochs=epochs, verbose=verbose, callbacks=callbacks, callback_metrics=callback_metrics, validation_steps=validation_steps, do_validation=do_validation) else: batch_fit_loop(model, inputs, targets, epoch_logs=epoch_logs, index_array=index_array, out_labels=out_labels, callback_model=callback_model, batch_size=batch_size, sample_weights=sample_weights, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, callbacks=callbacks, shuffle=shuffle, num_train_samples=num_train_samples, do_validation=do_validation) callbacks.on_epoch_end(epoch, epoch_logs) if callback_model.stop_training: break callbacks.on_train_end() return model.history
def batch_test_loop(model, inputs, targets, batch_size, sample_weights=None, verbose=0): """Test function for eager execution when input is given as arrays or tensors. Arguments: model: Model instance that is being evaluated in Eager mode. inputs: List of input arrays. targets: List of target arrays. batch_size: Integer batch size. sample_weights: Optional list of sample weight arrays. verbose: Verbosity mode. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ outs = [] feed_data = inputs + targets if sample_weights: feed_data += sample_weights num_samples = training_utils.check_num_samples(feed_data, batch_size=batch_size) if verbose == 1: progbar = generic_utils.Progbar(target=num_samples) batches = generic_utils.make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] inputs_batch = slice_arrays(inputs, batch_ids) targets_batch = slice_arrays(targets, batch_ids) if sample_weights: sample_weights_batch = slice_arrays(sample_weights, batch_ids) else: sample_weights_batch = None inputs_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in inputs_batch ] targets_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) for val in targets_batch ] if sample_weights: sample_weights_batch = [ ops.convert_to_tensor(val, dtype=backend.floatx()) if val is not None else None for val in sample_weights_batch ] loss_outs, loss, loss_metrics = _model_loss( model, inputs_batch, targets_batch, sample_weights=sample_weights_batch, training=False) metrics_results = _eager_metrics_fn(model, loss_outs, targets_batch) batch_outs = [] for _, v in zip(model.metrics_names, [backend.mean(loss)] + loss_metrics + metrics_results): batch_outs.append(tensor_util.constant_value(v)) if isinstance(batch_outs, list): if batch_index == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs
Ignored with the default value of `None`. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ model._make_predict_function() f = model.predict_function # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs) progbar.on_batch_end(batch_index, batch_logs) num_samples = training_utils.check_num_samples( inputs, batch_size, steps, 'steps') if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) indices_for_conversion_to_dense = [] for i in range(len(model._feed_inputs)): if (issparse is not None and issparse(inputs[i]) and not K.is_sparse(model._feed_inputs[i])): indices_for_conversion_to_dense.append(i) if steps is not None: # Step-based predictions. # Since we do not know how many samples