コード例 #1
0
    def default_lstm(self):
        '''
        '''
        img_seq_shape = (self.seq_length, ) + self.image_shape
        img_in = Input(shape=img_seq_shape, name='img_in')
        x = img_in

        x = TD(Cropping2D(cropping=((60, 0), (0, 0))))(x)
        x = TD(Convolution2D(24, (5, 5), strides=(2, 2), activation='relu'))(x)
        x = TD(Convolution2D(32, (5, 5), strides=(2, 2), activation='relu'))(x)
        x = TD(Convolution2D(64, (3, 3), strides=(2, 2), activation='relu'))(x)
        x = TD(Convolution2D(64, (3, 3), strides=(1, 1), activation='relu'))(x)
        x = TD(Convolution2D(64, (3, 3), strides=(1, 1), activation='relu'))(x)

        x = TD(Flatten(name='flattened'))(x)
        x = TD(Dense(100, activation='relu'))(x)
        x = TD(Dropout(.1))(x)
        x = LSTM(128, return_sequences=True, name="LSTM_seq")(x)
        x = Dropout(.1)(x)
        x = LSTM(128, return_sequences=False, name="LSTM_out")(x)
        x = Dropout(.1)(x)
        x = Dense(50, activation='relu')(x)
        x = Dropout(.1)(x)

        angle_out = Dense(1, activation='linear', name='angle_out')(x)
        #        continous output of throttle
        throttle_out = Dense(1, activation='linear', name='throttle_out')(x)

        model = Model(inputs=[img_in], outputs=[angle_out, throttle_out])
        model.compile(optimizer='adam',
                      loss={
                          'angle_out': 'mean_squared_error',
                          'throttle_out': 'mean_squared_error'
                      },
                      loss_weights={
                          'angle_out': 0.5,
                          'throttle_out': .5
                      })
        return model
コード例 #2
0
def rnn_lstm(seq_length=3, num_outputs=2, image_shape=(120, 160, 3)):

    img_seq_shape = (seq_length, ) + image_shape
    img_in = Input(batch_shape=img_seq_shape, name='img_in')
    drop_out = 0.3

    x = Sequential()
    x.add(TD(Cropping2D(cropping=((40, 0), (0, 0))),
             input_shape=img_seq_shape))  #trim 60 pixels off top
    x.add(TD(BatchNormalization()))
    x.add(TD(Convolution2D(24, (5, 5), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (3, 3), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (3, 3), strides=(1, 1), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(MaxPooling2D(pool_size=(2, 2))))
    x.add(TD(Flatten(name='flattened')))
    x.add(TD(Dense(100, activation='relu')))
    x.add(TD(Dropout(drop_out)))

    x.add(LSTM(128, return_sequences=True, name="LSTM_seq"))
    x.add(Dropout(.1))
    x.add(LSTM(128, return_sequences=False, name="LSTM_out"))
    x.add(Dropout(.1))
    x.add(Dense(128, activation='relu'))
    x.add(Dropout(.1))
    x.add(Dense(64, activation='relu'))
    x.add(Dense(10, activation='relu'))
    x.add(Dense(num_outputs, activation='linear', name='model_outputs'))

    return x
コード例 #3
0
def rnn_lstm(seq_length=3,
             num_outputs=2,
             input_shape=(120, 160, 3),
             roi_crop=(0, 0)):

    #we now expect that cropping done elsewhere. we will adjust our expeected image size here:
    input_shape = adjust_input_shape(input_shape, roi_crop)

    img_seq_shape = (seq_length, ) + input_shape
    img_in = Input(batch_shape=img_seq_shape, name='img_in')

    drop_out = 0.3
    x = Sequential()
    x.add(
        TD(Convolution2D(24, (5, 5), strides=(2, 2), activation='relu'),
           input_shape=img_seq_shape))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (3, 3), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Convolution2D(32, (3, 3), strides=(1, 1), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(MaxPooling2D(pool_size=(2, 2))))
    x.add(TD(Flatten(name='flattened')))
    x.add(TD(Dense(100, activation='relu')))
    x.add(TD(Dropout(drop_out)))

    x.add(LSTM(128, return_sequences=True, name="LSTM_seq"))
    x.add(Dropout(.1))
    x.add(LSTM(128, return_sequences=False, name="LSTM_fin"))
    x.add(Dropout(.1))
    x.add(Dense(128, activation='relu'))
    x.add(Dropout(.1))
    x.add(Dense(64, activation='relu'))
    x.add(Dense(10, activation='relu'))
    x.add(Dense(num_outputs, activation='linear', name='model_outputs'))

    return x
コード例 #4
0
def rnn_lstm(seq_length=2, num_outputs=2, image_shape=(120, 2 * 160)):

    from tensorflow.python.keras.layers.merge import concatenate
    from tensorflow.python.keras.layers import LSTM
    from tensorflow.python.keras.models import Sequential
    from tensorflow.python.keras.layers.wrappers import TimeDistributed as TD

    drop_out = 0.3

    img_seq_shape = (seq_length, ) + image_shape
    img_in = Input(batch_shape=img_seq_shape, name='img_in')

    x = Sequential()
    x.add(
        TD(Reshape(target_shape=image_shape + (1, )),
           input_shape=img_seq_shape))
    x.add(TD(Cropping2D(cropping=((40, 0), (0, 0))),
             input_shape=img_seq_shape))
    x.add(TD(BatchNormalization()))
    x.add(TD(Conv2D(24, (5, 5), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Conv2D(32, (5, 5), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Conv2D(32, (3, 3), strides=(2, 2), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(Conv2D(32, (3, 3), strides=(1, 1), activation='relu')))
    x.add(TD(Dropout(drop_out)))
    x.add(TD(MaxPool2D(pool_size=(2, 2))))
    x.add(TD(Flatten(name='flattened')))
    x.add(TD(Dense(100, activation='relu')))
    x.add(TD(Dropout(drop_out)))

    x.add(LSTM(128, return_sequences=True, name="LSTM_seq"))
    x.add(Dropout(.1))
    x.add(LSTM(128, return_sequences=False, name="LSTM_out"))
    x.add(Dropout(.1))
    x.add(Dense(128, activation='relu'))
    x.add(Dropout(.1))
    x.add(Dense(64, activation='relu'))
    x.add(Dense(10, activation='relu'))
    x.add(Dense(num_outputs, activation='linear', name='model_outputs'))

    return x