def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None): """Adds 2 blocks of [relu-separable conv-batchnorm]. Arguments: ip: Input tensor filters: Number of output filters per layer kernel_size: Kernel size of separable convolutions strides: Strided convolution for downsampling block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1 with backend.name_scope('separable_conv_block_%s' % block_id): x = layers.Activation('relu')(ip) if strides == (2, 2): x = layers.ZeroPadding2D( padding=imagenet_utils.correct_pad(x, kernel_size), name='separable_conv_1_pad_%s' % block_id)(x) conv_pad = 'valid' else: conv_pad = 'same' x = layers.SeparableConv2D( filters, kernel_size, strides=strides, name='separable_conv_1_%s' % block_id, padding=conv_pad, use_bias=False, kernel_initializer='he_normal')( x) x = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_1_bn_%s' % (block_id))( x) x = layers.Activation('relu')(x) x = layers.SeparableConv2D( filters, kernel_size, name='separable_conv_2_%s' % block_id, padding='same', use_bias=False, kernel_initializer='he_normal')( x) x = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_2_bn_%s' % (block_id))( x) return x
def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None): channel_dim = -1 with backend.name_scope('separable_conv_block_%s' % block_id): x = layers.Activation('relu')(ip) if strides == (2, 2): x = layers.ZeroPadding2D( padding=imagenet_utils.correct_pad(x, kernel_size), name='separable_conv_1_pad_%s' % block_id)(x) conv_pad = 'valid' else: conv_pad = 'same' x = layers.SeparableConv2D(filters, kernel_size, strides=strides, name='separable_conv_1_%s' % block_id, padding=conv_pad, use_bias=False, kernel_initializer='he_normal')(x) x = layers.BatchNormalization(axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_1_bn_%s' % (block_id))(x) x = layers.Activation('relu')(x) x = layers.SeparableConv2D(filters, kernel_size, name='separable_conv_2_%s' % block_id, padding='same', use_bias=False, kernel_initializer='he_normal')(x) x = layers.BatchNormalization(axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_2_bn_%s' % (block_id))(x) return x
def Xception( include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', ): """Instantiates the Xception architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Note that the default input image size for this model is 299x299. Caution: Be sure to properly pre-process your inputs to the application. Please see `applications.xception.preprocess_input` for an example. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=299, min_size=71, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 x = layers.Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input) x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x) x = layers.Activation('relu', name='block1_conv1_act')(x) x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x) x = layers.Activation('relu', name='block1_conv2_act')(x) residual = layers.Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv1_bn')(x) x = layers.Activation('relu', name='block2_sepconv2_act')(x) x = layers.SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x) x = layers.add([x, residual]) residual = layers.Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block3_sepconv1_act')(x) x = layers.SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv1_bn')(x) x = layers.Activation('relu', name='block3_sepconv2_act')(x) x = layers.SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x) x = layers.add([x, residual]) residual = layers.Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block4_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv1_bn')(x) x = layers.Activation('relu', name='block4_sepconv2_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x) x = layers.add([x, residual]) for i in range(8): residual = x prefix = 'block' + str(i + 5) x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv1_bn')(x) x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv2_bn')(x) x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv3_bn')(x) x = layers.add([x, residual]) residual = layers.Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block13_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv1_bn')(x) x = layers.Activation('relu', name='block13_sepconv2_act')(x) x = layers.SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x) x = layers.add([x, residual]) x = layers.SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv1_bn')(x) x = layers.Activation('relu', name='block14_sepconv1_act')(x) x = layers.SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv2_bn')(x) x = layers.Activation('relu', name='block14_sepconv2_act')(x) if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='xception') # Load weights. if weights == 'imagenet': if include_top: weights_path = data_utils.get_file( 'xception_weights_tf_dim_ordering_tf_kernels.h5', TF_WEIGHTS_PATH, cache_subdir='models', file_hash='0a58e3b7378bc2990ea3b43d5981f1f6') else: weights_path = data_utils.get_file( 'xception_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='b0042744bf5b25fce3cb969f33bebb97') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def Xception(input_shape=None): input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=299, min_size=71, data_format=backend.image_data_format(), require_flatten=True) img_input = layers.Input(shape=input_shape) channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 x = layers.Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input) x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x) x = layers.Activation('relu', name='block1_conv1_act')(x) x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x) x = layers.Activation('relu', name='block1_conv2_act')(x) residual = layers.Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv1_bn')(x) x = layers.Activation('relu', name='block2_sepconv2_act')(x) x = layers.SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x) x = layers.add([x, residual]) residual = layers.Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block3_sepconv1_act')(x) x = layers.SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv1_bn')(x) x = layers.Activation('relu', name='block3_sepconv2_act')(x) x = layers.SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x) x = layers.add([x, residual]) residual = layers.Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block4_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv1_bn')(x) x = layers.Activation('relu', name='block4_sepconv2_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x) x = layers.add([x, residual]) for i in range(8): residual = x prefix = 'block' + str(i + 5) x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv1_bn')(x) x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv2_bn')(x) x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x) x = layers.BatchNormalization(axis=channel_axis, name=prefix + '_sepconv3_bn')(x) x = layers.add([x, residual]) residual = layers.Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = layers.BatchNormalization(axis=channel_axis)(residual) x = layers.Activation('relu', name='block13_sepconv1_act')(x) x = layers.SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv1_bn')(x) x = layers.Activation('relu', name='block13_sepconv2_act')(x) x = layers.SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block13_sepconv2_bn')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x) x = layers.add([x, residual]) x = layers.SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x) x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv1_bn')(x) x = layers.Activation('relu', name='block14_sepconv1_act')(x) x = layers.SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x) x = layers.BatchNormalization(axis=channel_axis, name='block14_sepconv2_bn')(x) x = layers.Activation('relu', name='block14_sepconv2_act')(x) x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation('softmax', None) x = layers.Dense(NUM_CLASSES, activation='softmax', name='predictions')(x) # Create model. model = training.Model(img_input, x, name='xception') return model